
Chapter 4

Model-Based Measurement of Name

Concentration Risk in Credit Portfolios

4.1 Fundamentals and Research Questions on Name

Concentration Risk

As described in Sect. 2.6, name concentration risk arises if the idiosyncratic risk

cannot be diversified away, which concurrently means that assumption (A) of the

ASRF model, the infinite granularity, does not hold. However, a violation of (A)

does not have to lead to the fact that the ASRF framework cannot be used at all for

credit risk quantification. Nonetheless, the consequences of the violation have to be

considered, i.e. the existence of name concentration risk. This issue is not only a

problem that should be accounted for in credit risk management when dealing with

analytical models, but it is also critical for supervisory capital measurement in

banks.162 This raises the following question: Does assumption (A) of the IRB-

model under Pillar 1 generally hold for our portfolio or do we have to quantify name

concentration risk for Pillar 2?

Emmer and Tasche (2005) show that the underestimation of individual name
concentrations can have a significant impact, especially if the exposure weight of

a single credit is higher than 2%. Due to the limits on large exposures in the European

Union, the exposure to a client may not exceed 25% of a credit institution’s own

funds.163 Consequently, a weight of 2% (of total funds) can only be exceeded if (1)

more than 8% of a credit institution’s capital are own funds and (2) the large exposure

limit is reached. This shows that idiosyncratic name concentrations usually should

not be problematic if the large exposure rules are effective. Similarly it could be

quantified whether portfolio name concentration has a significant impact on the risk

of the portfolio. In this context, it would be interesting to know which characteristics

a real-world bank portfolio should fulfill in order to get a sufficient approximation

162Another solution to the problem of the violation of assumption (A) or (B) might be to cancel risk

quantification under the IRB Approach and use internal models. However, this solution is not

designated in Basel II.
163Cf. Sect. 3.2.
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of the “true” risk even if name concentrations are not explicitly measured. These

characteristics should be determined in a way that the accuracy of the ASRF

framework can be easily assessed for a broad range of credit portfolios. If the desired

accuracy cannot be achieved using the ASRF model, the VaR of the portfolio could

be approximated using the granularity adjustment formula. However, since this

formula does not provide an exact solution but an approximation of the risk stemming

from portfolio name concentration, it is important to know for which types of credit

portfolios the adjustment formula shows an adequate performance. Unfortunately, the

existing literature concerning name concentration risk does not answer these ques-

tions sufficiently.164 Against this background, the following important tasks regard-

ing name concentrations will be analyzed in this chapter:

l In which cases are the assumptions of the ASRF framework model critical

concerning the credit portfolio size?
l In which cases are currently discussed adjustments for the VaR-measurement

able to overcome the shortcomings of the ASRF model?

The answers to both questions would be available if the minimum number of

loans, which is necessary to fulfill the granularity assumption (A) with a required

accuracy, were known. For this purpose, it could be demanded that the analytically

determined VaR and the true VaR using the binomial model of Vasicek shall differ at

maximum 5%.165 Against this background, firstly, the formulas for the (first-order)

granularity adjustment will be derived.166 As the granularity adjustment itself is an

asymptotic result, it can be seen as an approximation for medium grained portfolios.

Thus, the existent framework will be extended in form of a second-order granularity

adjustment in order to account for small sized portfolios.167 The possibility of such

an extension was already mentioned by Gordy (2004) but neither derived nor tested

164Gordy (2003) comes to the conclusion that the granularity adjustment works fine for risk

buckets of more than 200 loans considering low credit quality buckets and for more than 1,000

loans for high credit quality buckets. However, he uses the CreditRisk+ framework from Credit

Suisse Financial Products (1997) and not the Vasicek model that builds the basis of Basel II, and he

does not analyze the effect of different correlation factors as they are assumed in Basel II.
165This question is also interesting when analyzing the Basel II formula because the designated

add-on factor for the potential violation of assumption (A) was cancelled from the second

consultative document to the third consultative document; see BCBS (2001a, 2003a). Thus, we

only prove under which conditions the assumption (A) of the Vasicek model is fulfilled. Of course,

this model may suffer from other assumptions like the distributional assumption of standardized

returns. However, since we would only like to address the topic of concentration risk, our focus

should be reasonable. Additionally, the distributional assumptions seem not to have a deep impact

on the measured VaR; see Koyluoglu and Hickman (1998a, b), Gordy (2000) or Hamerle and

Rösch (2005a, b, 2006).
166Wilde (2001) calls this “the granularity adjustment to first order in the unsystematic variance”.
167This procedure can be motivated by the fact that for market risk quantification of nonlinear

exposures two factors of the Taylor series (fist and second order) are common to achieve a higher

accuracy; see e.g. Crouhy et al. (2001) or Jorion (2001). This might be appropriate for credit risk as

well. Furthermore, the higher order derivatives of VaR given by Wilde (2003) make it possible to

systematically derive such a formula.
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so far. Secondly, the minimum number of loans in a portfolio will be inferred

numerically using two definitions of accuracy in order to enhance the theoretical

background with concrete facts on critical portfolio sizes.168 This could give an

advice which sub-portfolios have significant risk concentrations and thus should be

controlled on credit portfolio and not on individual credit level. In the first analyses it

will be focused on homogeneous credit portfolios, i.e. each borrower has an identical

PD as well as an identical EAD and LGD. Furthermore, the granularity adjustment

of an inhomogeneous portfolio will be examined on the basis of Monte Carlo

simulations as well. These analyses contribute to the explanation of differences

between simulated and analytically determined solutions to credit portfolio risk as

well as between Basel II capital requirements for Pillar 2 with respect to Pillar 1.169

Although it could be shown that the non-coherency of the VaR is not relevant for

the ASRF model, this result does not hold anymore if the assumption of infinite

granularity is not fulfilled. Thus, in Sect. 4.3 the derivation of the granularity

adjustment and the aforementioned numerical analyses will be performed for the

ES as well. In addition, the performance of the ES-based granularity adjustment

will be tested for portfolios with stochastic LGDs. Beside the theoretical advantages

of the ES, the results of the numerical study demonstrate that the granularity

adjustment generates better approximations for the ES than for the VaR. Moreover,

even if stochastic LGDs are included as an additional source of uncertainty, the

accuracy of the adjustment formula is very high.

4.2 Measurement of Name Concentration Using the Risk

Measure Value at Risk170

4.2.1 Considering Name Concentration with the Granularity
Adjustment

4.2.1.1 First-Order Granularity Adjustment for One-Factor Models

The principle of incorporating the effect of the portfolio size in a one-factor model

is very simple. As a first step, it is assumed that the portfolio is infinitely fine

168The Basel Committee on Banking Supervision already stated that in principle the effect of

portfolio size on credit risk is well understood but lacks practical analyses; see BCBS (2005b).
169Additionally, this study makes contribution to the ongoing research on analyzing differences

between Basel II capital requirements and banks internal “true” risk capital measurement

approaches. Since the harmonization of the regulatory capital requirements and the perceived

risk capital of banks internal estimates for portfolio credit risk is often stated as the major benefit of

Basel II, see e.g. Hahn (2005), p. 127, but often not observed in practice, this task might be of

relevance in the future.
170The main results of this section comply with G€urtler et al. (2008a).
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grained and the VaR can be determined under the ASRF framework. However, an

add-on factor is constructed, which accounts for the finite size of the portfolio and

converges to zero if assumption (A) of infinite granularity is (nearly) met. This

factor can be determined in form of the first element different from zero that results

from a Taylor series expansion of the VaR around the ASRF solution. An alterna-

tive approach is to evaluate the unintentional shift of the confidence level due to the

negligence of granularity and to transform the result into a shift of the loss quantile.

The approximation is based on some linearizations around the systematic loss.

Hence, both approaches rely on the proximity of the true VaR and the VaR under

the ASRF framework. As the implementation of the Taylor series expansion is more

straightforward, the following explanations are referred to this approach. The

pioneer work on the granularity adjustment of Wilde (2001), which relies on the

other approach mentioned, is presented in Appendix 4.5.1.

In order to perform the Taylor series expansion, the portfolio loss will be

subdivided into a systematic and an unsystematic part, i.e.

~L ¼ E ~L j ~x� �þ ~L� E ~L j ~x� �� � ¼: ~Y þ l ~Z: (4.1)

Thus, the first term Eð~L j ~xÞ ¼: ~Y describes the systematic part of the portfolio

loss that can be expressed as the expected loss conditional on ~x (see also (2.85)).

The second term ~L� Eð~L j ~xÞ ¼: l ~Z of (4.1) stands for the unsystematic part of the

portfolio loss, which results from the idiosyncratic risk. Therefore, ~Z describes the

general idiosyncratic component and l decides on the fraction of the idiosyncratic

risk that stays in the portfolio. Obviously, l tends to zero if the number of obligors n
converges to infinity, since this fraction (of the idiosyncratic risk) vanishes if

granularity assumption (A) from Sect. 2.6 holds. However, for a granularity adjust-

ment we claim that the portfolio is only “nearly” infinitely granular and thus l is just
close to but exceeds zero. In order to incorporate the idiosyncratic part of the

portfolio loss into the VaR-formula, we perform a Taylor series expansion around
the systematic loss at l ¼ 0. We get

VaRa ~L
� � ¼ VaRa ~Y þ l ~Z

� �

¼ VaRa ~Y
� �þ l

dVaRa ~Y þ l ~Z
� �

dl

" #

l¼0

þ l2

2!

d2VaRa ~Y þ l ~Z
� �

dl2

" #

l¼0

þ � � � þ lm

m!

dmVaRa ~Y þ l ~Z
� �

dlm

" #

l¼0

þ � � � : ð4:2Þ

Thus, the first term describes the systematic part of the VaR and all other terms

add an additional fraction to the VaR due to the undiversified idiosyncratic compo-

nent. If the Taylor series expansion is formed up to the quadratic term, the first two
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derivatives of VaR are needed. According to Gouriéroux et al. (2000), the first
and second derivative of VaR are given as171

dVaRa ~Y þ l ~Z
� �

dl

�

�

�

�

�

l¼0

¼ E ~Zj ~Y ¼ qa ~Y
� �� �

; (4.3)

d2VaRa ~Y þ l ~Z
� �

d2l

�

�

�

�

�

l¼0

¼ � 1

fYðyÞ
d

dy
fYðyÞV ~Z j ~Y ¼ y

� �� �

�

�

�

�

y¼qa ~Yð Þ
; (4.4)

with fYðyÞ being the probability density function of ~Y. Concurrently, the first

derivative of VaR equals zero172:

E ~Z j ~Y� � ¼ 1

l
� E ~L� E ~L j ~x� � j ~Y� � ¼ 1

l
� E ~L j ~Y� �� 1

l
� E ~L j ~Y� � ¼ 0; (4.5)

so that the second derivative is the first relevant element underlying the granu-

larity adjustment. With

l2 � V ~Z j ~Y� � ¼ V l ~Z j ~Y� � ¼ V ~L� ~Y j ~Y� � ¼ V ~L j ~Y� �

; (4.6)

the quadratic term of the Taylor series expansion (4.2) results in

Dl1 ¼ l2

2
� 1

fYðyÞ
d

dy
fYðyÞV ~Z j ~Y ¼ y

� �� �

�

�

�

�

y¼qa ~Yð Þ

 !

¼ � 1

fYðyÞ
d

dy
fYðyÞV ~L j ~Y ¼ y

� �� �

�

�

�

�

y¼qa ~Yð Þ
: (4.7)

As the conditional expectation ~Y ¼ Eð~L j ~xÞ is continuous and strictly mono-

tonously decreasing in x, the probability density function fYðyÞ can be transformed

into173

fYðyÞ ¼ fxðxÞ
dy dx=j j ¼ � fxðxÞ

dy dx=
¼ � fxðxÞ

d
dxE

~L j ~x ¼ x
� � : (4.8)

171See Appendix 4.5.2.
172This is valid because the added risk of the portfolio is unsystematic; see Martin and Wilde

(2002) for further explanations.
173See Appendix 4.5.3.
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Furthermore, using (4.8) and174

~Y ¼ qa ~Y
� �

, E ~L j ~x� � ¼ qa E ~L j ~x� �� �

, E ~L j ~x� � ¼ E ~L j q1�a ~xð Þ� �

, ~x ¼ q1�a ~xð Þ; (4.9)

the true quantile of a granular portfolio VaR
ðnÞ
a can be approximated by the Taylor

series expansion up to the quadratic term, which leads to the following formula for

the VaR including the granularity adjustment Dl1:

VaRðnÞ
a � VaRðASRFÞ

a þ Dl1 ¼: VaRð1st Order Adj:Þ
a

with Dl1 ¼ � 1

2fxðxÞ
d

dx

fxðxÞV ~L j ~x ¼ x
� �

d
dxE

~L j ~x ¼ x
� �

 !
�

�

�

�

�

x¼q1�a ~xð Þ
: (4.10)

This corresponds to the result of Wilde (2001) and Rau-Bredow (2002). Thus,

the VaR figure of the infinitely fine grained portfolio is adjusted by an additional

term, that is the first term different from zero of the Taylor series expansion (4.2). In

contrast to the ASRF solution, which relies on the conditional expectation only, the

granularity adjustment takes the conditional variance of the portfolio loss into

account. In the following, the expression above will be called the ASRF solution

with first-order (granularity) adjustment.

A more detailed analysis of (4.10) will show that the granularity adjustment is

a term of order O(1/n*), or for homogeneous portfolios simply O(1/n).175 For this
purpose, the conditional expectation and variance will be looked at. Due to the

conditional independence of the credit events and due to the restriction of the

individual loss rate ðgLGDi � 1 ~Dif gÞ to ½�1; 1� for all i 2 1; :::; nf g, there exists a

finite number V�ðxÞ � 1 such that

V ~L j ~x¼ x
� �¼ V

X

n

i¼1

wi � gLGDi � 1 ~Dif gj~x¼ x

 !

¼
X

n

i¼1

wi
2 �V gLGDi � 1 ~Dif gj~x¼ x

� �

¼
X

n

i¼1

wi
2 �V�ðxÞ ¼ V�ðxÞ �

X

n

i¼1

wi
2 ¼ V�ðxÞ � 1

n�
: (4.11)

174Cf. the identity 2.90.
175The notation n* refers to the effective number of credits as introduced in (2.87).
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Under the same conditions there also exists a finite number E�ðxÞ � 1 such that

E ~L j ~x ¼ x
� � ¼ E

X

n

i¼1

wi � gLGDi � 1 ~Dif gj~x ¼ x

 !

¼
X

n

i¼1

wi � E gLGDi � 1 ~Dif gj~x ¼ x
� �

¼ E�ðxÞ �
X

n

i¼1

wi ¼ E�ðxÞ: (4.12)

Using these expressions, the granularity add-on Dl1 from (4.10) can be written as

Dl1 ¼ � 1

n�
1

2fxðxÞ
d

dx

fxðxÞV�ðxÞ
d
dx E

�ðxÞ

 !
�

�

�

�

�

x¼q1�a ~xð Þ
¼ O

1

n�

	 


: (4.13)

This shows that the granularity adjustment is linear in terms of 1/n*, so that in a

homogeneous portfolio the add-on for undiversified idiosyncratic risk is halved if

the number of credits is doubled. This corresponds to the heuristic approach of

Gordy (2001), who presumed that the add-on is constant in terms of 1/n and

estimated the slope of this term by simulation. At the same time it has to be stated

that neglecting the additional terms of the Taylor series expansion, which are at

least of order O(1/n2) in the homogeneous case,176 implies that all higher moments

like the conditional skewness and kurtosis are ignored. This can be made clear by

expressing the higher conditional moments about the mean �m similar to (4.11) and

(4.12) as177

�m ~L j ~x ¼ x
� � ¼

X

n

i¼1

wi
m � �m gLGDi � 1 ~Dif gj~x ¼ x

� �

¼ �m
�ðxÞ �

X

n

i¼1

wi
m

� �m
�ðxÞ �

X

n

i¼1

b

n � a
	 
m

¼ �m
�ðxÞ � b

a

	 
m

� 1

nm�1

¼ O
1

nm�1

	 


; (4.14)

with some finite numbers �m
�ðxÞ � 1 and 0< a � EADi � b for all i. If higher

moments like the conditional skewness shall be considered for the granularity

adjustment, too, it would be necessary to include additional elements of the Taylor

series expansion. This will be done in the subsequent Sect. 4.2.1.3, but beforehand,

the first-order granularity adjustment will be applied to the Vasicek model.

176The equivalent term for heterogeneous portfolios is O
P

n

i¼1

w3

	 


.

177The mth moment of a random variable ~X about the mean �mð ~XÞ is defined as

�mð ~XÞ :¼ Eð½ ~X � Eð ~XÞ�mÞ; cf. Abramowitz and Stegun (1972), 26.1.6.
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4.2.1.2 First-Order Granularity Adjustment for the Vasicek Model

Formula (4.10) is the general result of the granularity adjustment for one-factor

models, which could be applied to different models. The application to the one-

factor version of CreditRisk+ is demonstrated in Wilde (2001). In the following, the

granularity add-on will be specified for the Vasicek model. Thus, the conditional

probability of default is assumed to be given by

piðxÞ ¼ F
F�1ðPDiÞ � ffiffiffiffi

ri
p � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

(4.15)

and the systematic factor fxðxÞ ¼ ’ is standard normally distributed. For ease of

notation, the mth moment of some random variable ~X about the origin will be

denoted by mmð ~XÞ :¼ Eð ~XmÞ, and the mth conditional moment of the portfolio loss

about the origin will be indicated by

mm;c :¼ mm ~L j ~x ¼ x
� �

: (4.16)

As noticed before, the mth moment of a random variable ~X about the mean is

represented by �mð ~XÞ :¼ Eð½ ~X � Eð ~XÞ�mÞ, and the mth conditional moment of the

portfolio loss about the mean will be denoted by

�m;c :¼ �m ~L j ~x ¼ x
� �

: (4.17)

Using this notation, the conditional expectation and the conditional variance

are indicated by m1;c and �2;c, respectively, and the granularity adjustment (4.10)

can be expressed as178

Dl1 ¼ � 1

2’

d

dx

’�2;c
dm1;c dx=

 !
�

�

�

�

�

x¼F�1 1�að Þ

¼ 1

2

x � �2;c
dm1;c dx=

� d�2;c dx=

dm1;c dx=
þ �2;c � d2m1;c dx2

�

dm1;c dx=
� �2

" #
�

�

�

�

�

x¼F�1 1�að Þ
: (4.18)

Thus, the first and second derivatives of the conditional expectation as well

as the first derivative of the conditional variance have to be determined. For this

purpose, it will be assumed that the LGDs are stochastically independent of each

178Cf. Appendix 4.5.4.
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other.179 Furthermore, the expectation and variance of LGD will be denoted by

ELGD and VLGD, respectively. The required moments are given as180

m1;c ¼
X

n

i¼1

wi � ELGDi � piðxÞ; (4.19)

�2;c ¼
X

n

i¼1

w2
i � ELGD2

i þ VLGDi

� � � piðxÞ � ELGD2
i � p2i ðxÞ

� �

: (4.20)

Thus, the needed derivatives are given as

dm1;c
dx

¼
X

n

i¼1

wi � ELGDi � d piðxÞð Þ
dx

; (4.21)

d2m1;c
dx2

¼
X

n

i¼1

wi � ELGDi � d
2 piðxÞð Þ
dx2

; (4.22)

d�2;c
dx

¼
X

n

i¼1

w2
i � ELGD2

i þ VLGDi

� � � d piðxÞð Þ
dx

� ELGD2
i �

d p2i ðxÞ
� �

dx


 �

: (4.23)

According to this, the first two derivatives of piðxÞ as well as the first derivative
of pi

2ðxÞ have to be determined. Using the notation

piðxÞ ¼ F zið Þ; with zi ¼
F�1 PDið Þ � ffiffiffiffi

ri
p

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p ; (4.24)

we obtain

d piðxÞð Þ
dx

¼ d

dx
F zið Þ ¼ �

ffiffiffiffi

ri
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � ’ zið Þ; (4.25)

d2 piðxÞð Þ
dx2

¼ �
ffiffiffiffi

ri
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � d

dx
’ zið Þ ¼ � ri

1� ri
� zi � ’ zið Þ; (4.26)

179This assumption can be critical for real-world portfolios. Especially, it is often assumed in

ongoing research on credit portfolio modeling that the LGD is dependent on the systematic factor.

However, the granularity adjustment formula would complicate significantly as neither the ELGD

nor the VLGD could be treated as constant for the derivatives. Against this background, this

assumption will be retained for the derivation.
180Cf. Appendix 4.5.4. Pykhtin and Dev (2002) corrected the formulas of Wilde (2001), who

neglected the last term of the following conditional variance.
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d p2i ðxÞ
� �

dx
¼ d

dx
F zið Þð Þ2 ¼ �2 �

ffiffiffiffi

ri
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � Fi zið Þ � ’ zið Þ: (4.27)

Formulas (4.21)–(4.27) have to be inserted into (4.18) to get the granularity

adjustment. This leads to the following expression for the first-order granularity

adjustment for heterogeneous portfolios in the Vasicek model:

Dl1 ¼ 1

2
F�1 að Þ

P

n

i¼1

w2
i ELGD2

i þ VLGDi

� �

F zið Þ � ELGD2
iF

2 zið Þ� �

P

n

i¼1

wiELGDi

ffiffiffi

ri
p
ffiffiffiffiffiffiffiffi

1�ri
p � ’ zið Þ

2

6

6

4

�
P

n

i¼1

w2
i ELGD2

i þ VLGDi

� �

ffiffiffi

ri
p
ffiffiffiffiffiffiffiffi

1�ri
p ’ zið Þ � 2ELGD2

i

ffiffiffi

ri
p
ffiffiffiffiffiffiffiffi

1�ri
p Fi zið Þ’ zið Þ


 �

P

n

i¼1

wiELGDi

ffiffiffi

ri
p
ffiffiffiffiffiffiffiffi

1�ri
p ’ zið Þ

�
X

n

i¼1

w2
i ELGD2

i þ VLGDi

� �

F zið Þ � ELGD2
iF

2 zið Þ� �

�
P

n

i¼1

wiELGDi
ri

1�ri
zi’ zið Þ

P

n

i¼1

wiELGDi

ffiffiffi

ri
p
ffiffiffiffiffiffiffiffi

1�ri
p ’ zið Þ

	 
2

3

7

7

7

5

zi¼F�1 PDið Þþ ffiffiffirip
F�1 að Þ

ffiffiffiffiffiffi

1�ri
p

: (4.28)

For homogeneous portfolios, this formula can be simplified to181

Dl1 ¼ 1

2n

ELGD2 þ VLGD

ELGD

FðzÞ
’ðzÞ

F�1 að Þ 1� 2rð Þ þ F�1 PDð Þ ffiffiffi

r
p

ffiffiffi

r
p ffiffiffiffiffiffiffiffiffiffiffi

1� r
p � 1


 �	

�ELGD � FðzÞ ðzÞF
�1 að Þ 1� 2rð Þ þ F�1 PDð Þ ffiffiffi

r
p

ffiffiffi

r
p ffiffiffiffiffiffiffiffiffiffiffi

1� r
p � 2


 �


z¼F�1 PDð Þþ ffiffirp
F�1 að Þ

ffiffiffiffiffi

1�r
p

;

(4.29)

which is the formula presented by Pykhtin and Dev (2002).

4.2.1.3 Second-Order Granularity Adjustment for One-Factor Models

Recalling the discussion of the first-order granularity adjustment, the ASRF solu-

tion might only lead to good approximations if term (4.28) of order O(1/n) is close

181Cf. Appendix 4.5.5.
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to zero, whereas the ASRF solution including the first-order granularity adjustment

might only be sufficient if the terms of order O(1/n2) vanish. For medium sized risk

buckets this might be true, but if the number of credits in the portfolio is getting

considerably small, an additional factor might be appropriate. Particularly, the

mentioned granularity adjustment is linear in 1/n and this might not hold for

small portfolios. Indeed, Gordy (2003) shows by simulation that the portfolio

loss seems to follow a concave function and therefore adjustment (4.28) would

slightly overshoot the theoretically optimal add-on for smaller portfolios.182 An

explanation of the described behavior is that the first-order adjustment only takes

the conditional variance into account whereas higher conditional moments, which

result from higher order terms, are ignored. As noticed in Sect. 4.1, additional

elements of the Taylor series expansion (4.2) will be calculated in the following

with the intention to improve the adjustment for small portfolio sizes. Hence, all

elements of order O(1/n2) will be taken into account, and thus the error will be

reduced to O(1/n3).183 This newly derived formula will be called the second-order
granularity adjustment. The resulting ASRF solution including the first and the

second-order granularity adjustment Dl2 is

VaRð1st þ 2nd Order Adj:Þ
a ¼ VaRðASRFÞ

a þ Dl1 þ Dl2; (4.30)

where Dl2 represents the O(1/n
2) elements of (4.2).

In order to calculate these elements, higher derivatives of VaR are required.

Referring to Wilde (2003), a formula for all derivatives of VaR is derived in

Appendix 4.5.6. Having a closer look at the derivatives of VaR, the fourth and a part

of the fifth element of the Taylor series are identified to be relevant for the O(1/n2)
terms.184 Thus, the third and the fourth derivative of VaR are required. As shown in

Appendix 4.5.7, the rather complex result for all derivatives can be simplified for

the first five derivatives (m ¼ 1; 2; :::; 5) of VaR to

@mVaRa ~Yþ l ~Z
� �

@lm

�

�

�

�

�

l¼0

¼ �1ð Þm � 1

fYðyÞ
	 


dm�1 mm ~Z j ~Y ¼ y
� �

fYðyÞ
� �

dym�1

"

�kðmÞ � d
dy

1

fYðyÞ �
d m2 ~Z j ~Y ¼ y

� �

fYðyÞ
� �

dy

dm�3 mm�2
~Z j ~Y ¼ y
� �

fYðyÞ
� �

dym�3

 !#

y¼qa ~Yð Þ
;

(4.31)

with kð1Þ ¼ kð2Þ ¼ 0; kð3Þ ¼ 1; kð4Þ ¼ 3, and kð5Þ ¼ 10.

182Gordy (2003) observes the concavity of the granularity add-on for a high-quality portfolio

(A-rated) up to a portfolio size of 1,000 debtors.
183See Gordy (2004), p. 112, footnote 5, for a similar suggestion.
184See Appendix 4.5.8 for details regarding the order of these elements.
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Using the third and the fourth derivative of VaR and due to185

lm � mm ~Z j ~Y ¼ y
� �

�

�

y¼qa ~Yð Þ ¼ �m ~L j ~Y ¼ y
� �

�

�

y¼qa ~Yð Þ ¼: �mðyÞjy¼qa ~Yð Þ (4.32)

as well as �1ðyÞ ¼ 0, the elements of order O(1/n2) of the Taylor series expansion
(4.2) are given as

Dl2 ¼ �1ð Þ3
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� 1
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(4.33)

Recalling that mm;c ¼ mmð~L j ~x ¼ xÞ, fYðyÞ ¼ � fxðxÞ
dy=dx (see (4.8)), and

�mðyÞjy¼qað ~YÞ :¼ �mð~L j ~Y ¼ qað ~YÞÞ ¼ �mð~L j ~x ¼ q1�að~xÞÞ ¼: �m;c
�

�

x¼q1�að~xÞ (cf. (4.9)

and (4.32)), Dl2 can be written as

Dl2 ¼ 1
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; (4.34)

which is our general result for the second-order granularity adjustment. Having a

closer look at (4.34), it can be seen that the second-order adjustment takes a squared

term of the conditional variance as well as the conditional skewness into account,186

which are both of order O(1/n2).187

185Cf. (4.236) of Appendix 4.5.8.
186Precisely, the element �3;c is the third conditional moment centered about the mean whereas the

conditional skewness is the “normalized” third moment, defined as the third conditional moment

about the mean divided by the conditional standard deviation to the power of three.
187Cf. (4.14).
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4.2.1.4 Second-Order Granularity Adjustment for the Vasicek Model

Similar to Sect. 4.2.1.2, we specify our general result of the second-order granular-

ity adjustment for the Vasicek model with

piðxÞ ¼ F
F�1ðPDiÞ � ffiffiffiffi

ri
p � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

(4.35)

and a standard normally distributed systematic factor, leading to fx ¼ ’ and

q1�að~xÞ ¼ F�1ð1� aÞ. As derived in Appendix 4.5.9 under the assumption of

a standard normally distributed systematic factor, the second-order granularity

adjustment is equivalent to

Dl2 ¼ 1
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� �2

�3;c x2�1�d3m1;c dx=
3

dm1;c dx=
þ3x d2m1;c dx2

�� �

dm1;c dx=
þ3 d2m1;c dx2

�� �2

dm1;c dx=
� �2

 !"

þd�3;c
dx

�2x�3 d2m1;c dx2
�� �

dm1;c dx=

 !

þd2�3;c
dx2

#

þ 1

8 dm1;c dx=
� �3

�x�3
d2m1;c dx2

�

dm1;c dx=

 !

�2;c �x�d2m1;c dx2
�

dm1;c dx=

" #

þd�2;c
dx

 !" 2

þ2 �2;c xþd2m1;c dx2
�

dm1;c dx=

" #

�d�2;c
dx

 !

�2;c 1þd3m1;c dx3
�

dm1;c dx=
� d2m1;c dx2

�� �2

dm1;c dx=
� �2

" # 

þd�2;c
dx

xþd2m1;c dx2
�

dm1;c dx=

" #

�d2�2;c
dx2

!#
�

�

�

�

�

x¼F�1 1�að Þ
:

(4.36)

As can be seen from (4.36), Dl2 is a function of m1;c, �2;c, and �3;c. According to

(4.19), (4.20), and (4.264),188 these moments are given as

m1;c ¼
X

n

i¼1

wi � ELGDi � piðxÞ; (4.37)

�2;c ¼
X

n

i¼1

w2
i � ELGD2

i þ VLGDi

� � � piðxÞ � ELGD2
i � p2i ðxÞ

� �

; (4.38)

188See Appendix 4.5.10.
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�3;c ¼
X

n

i¼1

w3
i ELGD3

i þ 3 � ELGDi � VLGDi þ SLGDi

� � � piðxÞ
�

�3 � ELGD3
i þ ELGDi � VLGDi

� � � p2i ðxÞ þ 2 � ELGD3
i � p3i ðxÞ

�

; (4.39)

with SLGD :¼ �3ðgLGDÞ. The conditional PD from (4.35) can be written as

piðxÞ ¼ FðziÞ; with zi ¼ F�1 PDið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p � si � x and si ¼

ffiffiffi

r
p

i
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p : (4.40)

Using this notation and having a closer look at (4.36) and the conditional

moments, we find that the following derivatives are needed

d piðxÞð Þ
dx

¼ �si � ’ zið Þ; (4.41)

d2 piðxÞð Þ
dx2

¼ �s2i � zi � ’ zið Þ; (4.42)

d3 piðxÞð Þ
dx3

¼ �s3i � ’ zið Þ � z2i � 1
� �

; (4.43)

d p2i ðxÞ
� �

dx
¼ �2 � si � F zið Þ � ’ zið Þ; (4.44)

d2 p2i ðxÞ
� �

dx2
¼ 2 � s2i � ’ zið Þ � ’ zið Þ � F zið Þ � zi½ �; (4.45)

d p3i ðxÞ
� �

dx
¼ �3 � si � F2 zið Þ � ’ zið Þ; (4.46)

d2 p3i ðxÞ
� �

dx2
¼ 3 � s2i � F zið Þ � ’ zið Þ � 2 � ’ zið Þ � F zið Þ � zi½ �: (4.47)

Finally, we just have to use (4.37)–(4.47) in order to determine the second-order

adjustment formula (4.36). The resulting expression can easily be calculated

with standard computer applications without the need to aggregate the terms to a

single formula. Thus, we have achived our aim to derive a formula that takes the

conditional skewness into account and reduces the error to OðP
n

i¼1

w4Þ or to O(1/n3)

for homogeneous portfolios. This can best be seen for homogeneous portfolios for

the special case that the gross loss rates are modeled:

Dl2 ¼ 1

6n2s2’2
x2 � 1þ s2 þ 3xszþ 2s2z2
� ��

F� 3F2 þ 2F3
� �

þ s’ 2xþ 3szð Þ 1� 6Fþ 6F2
� ��s2’ z� 6 Fz� ’½ � þ 6F Fz� 2’½ �ð Þ�
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� 1

8n2s3’3
�x� 3szð Þ F� F2

� � �x� sz½ � � s’ 1� 2F½ �� �� 2

þ 2 F� F2
� �

xþ sz½ � þ s’ 1� 2F½ �� �

� F� F2
� �

1� s2
� �� � s’ 1� 2F½ � xþ sz½ � þ s2’ zþ 2 ’� Fzð Þ½ ���; (4.48)

with F ¼ FðzÞ, ’ ¼ ’ðzÞ, z ¼ F�1 PDð Þ� ffiffi

r
p �x

ffiffiffiffiffiffiffi

1�r
p , s ¼

ffiffi

r
p
ffiffiffiffiffiffiffi

1�r
p , and x ¼ F�1ð1� aÞ.

Even if the formulas appear quite complex, both adjustments are easy to

implement, fast to compute and we do not have to run Monte Carlo simulations

and thereby avoid simulation noise.

4.2.2 Numerical Analysis of the VaR-Based Granularity
Adjustment

4.2.2.1 Impact on the Portfolio-Quantile

As mentioned in Sect. 4.1, there is no concrete analysis in the literature for which

type of credit portfolios the impact of portfolio name concentrations is negligible.

Instead, we only essentially know that a (homogeneous) portfolio consisting of a

higher number of credits incorporates less name concentration risk or that name

concentrations can account for round about 13–21% additional risk if the portfolio

is highly concentrated.189 Moreover, we do not know how good the first-order or the

second-order granularity adjustment formulas work for different portfolio types.

Against this background, subsequently the accuracy of the ASRF formula, the first-

order, and the second-order granularity adjustment will be analyzed.

At first, we discuss the general behavior of the four procedures for risk quanti-

fication of homogeneous portfolios presented in Sects. 2.5, 2.6, 2.7, 4.2.1.2, and

4.2.1.4, which are

(a) The numerically “exact” coarse grained solution (see (2.75))

(b) The fine grained ASRF solution (see (2.97))

(c) The ASRF solution with first-order adjustment (see (4.10) and (4.29))

(d) The ASRF solution with first- and second-order adjustments (see (4.30)

and (4.48))

each applying the conditional probability of default (2.66) of the Vasicek model.

For the comparison, we evaluate the portfolio loss distribution of a simple portfolio

189Cf. BCBS (2006), p. 10.
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that consists of 40 credits, each with a probability of default of PD ¼ 1% and a

loss given default of LGD ¼ 1. The correlation parameter is set to r ¼ 20%.190

Using these parameters, we calculate the loss distribution using the “exact” solution

(a) as well as the approximations (b) to (d). The results are shown in Fig. 4.1 for

portfolio losses up to 30 % (12 credits) and the corresponding quantiles (of the

loss distribution) starting at a ¼ 0:7. See Fig. 4.2 for the region of high quantiles

a � 0:994, which are of special interest in a VaR-framework for credit risk with

high confidence levels.

It is obvious to see that the coarse grained solution (a) is not continuous since the

distribution of defaults is a discrete binomial mixture whereas all other solutions (b)

to (d) are “smooth” functions. This is caused by the fact that these approximations

for the loss distribution assume an infinitely granular portfolio, i.e. the loss distri-

bution is monotonous increasing and differentiable (solution (b)), or at least are

derived from such an idealized portfolio ((c) and (d)).

Now, we examine the result for the VaR-figures at confidence levels 0.995 and

0.999. Using the exact, discrete solution (a), the VaR is 12.5% (or 5 credits) for the
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Fig. 4.1 Value at Risk for a wide range of probabilities

190The chosen portfolio exhibits high unsystematic risk and therefore serves as a good example in

order to explain the differences of the four solutions. However, we evaluated several portfolios and

basically, the results do not differ. Additionally, we claim that the general statements can also be

applied to heterogeneous portfolios.
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0.995 quantile and 17.5% (or 7 credits) for the 0.999 quantile. Compared to this, the

ASRF solution (b) exhibits significant lower losses at these confidence levels,

which are 9.46% for the 0.995 quantile and 14.55% for the 0.999 quantile. Obvi-

ously, the ASRF solution underestimates the portfolio loss, since it does not take

(additional) concentration risks into account. If we add the first order adjustment

(c), the VaR figures increase compared to the ASRF solution (b) with values

12.55% for the 0.995 quantile and 18.59% for the 0.999 quantile. Both values are

good proxies for the “true” solution (a). Especially the VaR at 0.995 confidence

level is nearly exact (12.55% compared to 12.5%). However, (c) seems to be a

conservative measure, since the VaR is positively biased.

Using the additional second-order adjustment (d), the VaR is lowered to

12.12% for the 0.995 quantile and 17.48% for the 0.999 quantile. In this case,

the VaR at 0.999 confidence level is nearly exact (17.48% compared to 17.5%).

Nonetheless, (d) is likely to be a progressive approximation for the “exact”

solution (a), since the VaR is negatively biased. Summing up these first results

(see also Figs. 4.1 and 4.2), using the ASRF solution (b), the portfolio distribu-

tions shift to lower losses for the VaR compared to the “exact” solution (a), since

an infinitely high number of credits is presumed. Precisely, the idiosyncratic risk

is diversified completely, resulting in a lower portfolio loss at high confidence

levels. If the first order granularity adjustment (c) is incorporated, this effect is

weakened and especially for the relevant high confidence levels the portfolio loss

increases compared to the ASRF solution (b). This means that the first-order
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granularity adjustment is usually positive.191 However, if the second-order gran-

ularity adjustment (d) is added, the portfolio loss distribution shifts backwards

again (for high confidence levels). This can be addressed to the alternating sign of

the Taylor series, as can be seen in (4.31). Since the first-order granularity

adjustment is positive, the second-order adjustment tends to be negative. Thus,

with incorporation of the second-order adjustment (d), the approximation of

the discrete distribution of the coarse grained portfolio (a) is (in general) less

conservative compared to the (only) use of the first order adjustment. However, a

clear conclusion that the application of the second-order adjustment (d) in order to

approximate the discrete numerical derived distribution (a) for high confidence

levels outperforms the only use of the first-order adjustment (c) cannot be

stated.192

To conclude, if we appraise the approximations for the coarse grained portfolio,

we find both adjustments (c) and (d) to be a much better fit of the numerical solution

in the (VaR relevant) tail region of the loss distribution than the ASRF solution,

whereas the first-order adjustment is more conservative and seems to give the better

overall approximation in general.

4.2.2.2 Size of Fine Grained Risk Buckets

Reconsidering the assumptions of the ASRF framework (see Sect. 2.6), we found

assumption (A) – the infinite granularity assumption – to be critical in a one factor

model. Thus, we investigate in detail the critical numbers of credits in homo-

geneous portfolios that fulfill this condition. Therefore, we have to define a critical

value for the deviation of the “idealized” VaR of the ASRF solution (b) from the

“true” VaR figure from solution (a) to discriminate an infinite granular portfolio

from a finite granular portfolio. We do that in two ways:

Firstly, it could be argued that the fine grained approximation (2.97) in order to

calculate the VaR is only adequate if its value does not exceed the “true” VaR from

(2.75) of the coarse grained bucket minus a target tolerance b, both using a

confidence level of 0.999. Precisely, we define a critical number I
ðASRFÞ
c;per of credits

in the bucket, so that each portfolio with a higher number of credits than I
ðASRFÞ
c;per

meets this specification. We use the expression193

191See Rau-Bredow (2005) for a counter-example for very unusual parameter values. This problem

can be addressed to the use of VaR as a measure of risk which does not guarantee sub-additivity;

cf. Sect. 2.2.3.
192By contrast, we expected a significant enhancement by using the second order adjustment like

mentioned in Gordy (2004), p. 112, footnote 5.
193To address to the minimum number after which the target tolerance will permanently hold, we

have to add the notation “for all N � n” because the function of the coarse grained VaR exhibits

jumps dependent on the number of credits.
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Here, we set the target tolerance b to 5%, meaning that the “true” VaR specified

by coarse grained risk buckets does not differ from the analytic VaR using the fine

grained solution (2.97) by more than 5% if the number of credits in the bucket

reaches at least I
ðASRFÞ
c;per .

Secondly, the fine grained approximation (b) of the VaR (“idealized” VaR) may

be sufficient as long as its result using a confidence level of 0.999 does not exceed

the “true” VaR as defined by solution (a) of the coarse grained bucket using a

confidence level of 0.995, i.e.

I
ðASRFÞ
c;abs ¼ sup n : VaR

ðASRFÞ
0:999

~L
� �

<VaR
ðnÞ
0:995

~L
� �

� �

: (4.50)

This definition of a critical number can be justified due to the development of

the IRB-capital formula in Basel II: When the granularity adjustment (of Basel II)

was cancelled, simultaneously the confidence level was increased from 0.995 to

0.999.194 Thus, the reduction of the capital requirement by neglecting granularity

was roughly compensated by an increase of the target confidence level. The risk of

portfolios with a high number of credits will therefore be overestimated if we

assume that the actual target confidence level is 0.995, whereas the risk for a

low number of credits will be underestimated. Thus, a critical number I
ðASRFÞ
c;abs of

credits in the bucket exists, so that in each portfolio with a higher number of credits

than I
ðASRFÞ
c;abs , the VaR can be stated to be overestimated.

The critical numbers I
ðASRFÞ
c;per and I

ðASRFÞ
c;abs for homogeneous portfolios with differ-

ent parameters r and PD are reported in Tables 4.1 and 4.2. We do not only report

the critical numbers for Basel II conditions, but also a for wide range of parameter

settings that might be relevant if banks internal data are used for estimating r.
Due to the supervisory formula, this parameter is a function of PD for corporates,

sovereigns, and banks as well as for Small and Medium Enterprises (SMEs) and

(other) retail exposures and remains fixed for residential mortgage exposures and

revolving retail exposures.195

With definition (4.49), the critical numbers I
ðASRFÞ
c;per vary from 23 to 35,986 credits

(see Table 4.1), dependent on the probability of default PD and the correlation

194Beside some adjustments on the correlation parameter, these were the major changes of the

IRB-formula from the second to the third consultative document; see BCBS (2001a, 2003a).
195See Sect. 2.7 for details. In both tables, (rounded) parameters r due to Basel II are marked.
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Table 4.1 Critical number of credits from that ASRF solution can be stated to be sufficient for

measuring the true VaR (see (4.49))

AAA

up to

AA�

A� up

to A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 35,986 23,985 5,389 5,184 4,105 3,176 2,057 1,390 988 478 370 205

3.5% 30,501 20,122 4,627 4,457 3,544 2,755 1,801 1,214 861 421 322 175

4.0% 26,051 17,272 4,054 3,851 3,076 2,402 1,563 1,077 760 375 295 161

4.5% 22,372 14,906 3,569 3,392 2,719 2,132 1,398 958 690 350 271 145

5.0% 19,669 13,160 3,153 3,047 2,412 1,928 1,273 866 628 320 255 128

5.5% 17,723 11,667 2,840 2,701 2,180 1,722 1,145 784 564 289 229 125

6.0% 15,715 10,590 2,611 2,442 1,977 1,566 1,032 711 515 264 205 116

6.5% 14,276 9,452 2,366 2,252 1,828 1,428 946 655 477 251 201 106

7.0% 12,730 8,637 2,148 2,045 1,665 1,327 869 615 457 226 185 101

7.5% 11,633 7,915 1,990 1,896 1,547 1,214 827 578 412 209 167 90

8.0% 10,657 7,272 1,813 1,761 1,414 1,133 762 527 389 206 160 87

8.5% 9,785 6,695 1,720 1,607 1,318 1,040 703 505 357 200 156 87

9.0% 9,222 6,176 1,571 1,498 1,231 992 660 460 338 183 143 80

9.5% 8,504 5,707 1,466 1,427 1,152 930 610 443 326 164 135 76

10.0% 7,853 5,281 1,399 1,334 1,079 873 597 419 304 157 132 68

10.5% 7,262 5,015 1,309 1,249 1,011 804 552 382 289 153 118 70

11.0% 6,900 4,655 1,226 1,170 949 756 532 376 285 144 120 65

11.5% 6,398 4,324 1,149 1,097 911 726 493 357 257 138 109 64

12.0% 6,099 4,127 1,103 1,053 838 684 466 332 254 135 107 58

12.5% 5,669 3,843 1,036 989 806 645 450 315 242 127 103 60

13.0% 5,419 3,677 974 952 759 622 435 299 226 117 94 53

13.5% 5,046 3,430 915 896 732 587 395 284 211 117 98 55

14.0% 4,701 3,290 882 843 706 555 391 288 201 110 87 52

14.5% 4,510 3,073 851 794 666 536 362 263 200 101 91 50

15.0% 4,331 2,954 822 767 629 519 344 250 195 108 84 51

15.5% 4,044 2,763 775 741 594 491 349 254 178 95 81 52

16.0% 3,892 2,661 731 717 589 476 324 226 186 100 78 44

16.5% 3,748 2,564 690 677 557 451 315 220 174 96 75 51

17.0% 3,507 2,403 668 639 540 427 299 225 159 86 67 42

17.5% 3,383 2,320 647 619 511 404 291 205 159 95 66 38

18.0% 3,167 2,241 611 585 496 403 277 200 152 80 70 33

18.5% 3,060 2,103 593 583 469 382 263 195 145 90 61 34

19.0% 2,959 2,034 576 551 456 362 250 186 142 85 65 35

19.5% 2,863 1,969 544 521 432 352 250 186 129 80 61 30

20.0% 2,685 1,850 529 507 420 343 244 173 133 77 57 31

20.5% 2,601 1,793 500 493 409 317 232 165 127 74 58 32

21.0% 2,522 1,739 487 466 377 326 227 170 131 73 51 26

21.5% 2,446 1,635 474 454 367 301 216 158 119 63 52 27

22.0% 2,297 1,587 448 442 368 302 211 163 123 64 53 28

22.5% 2,230 1,541 437 418 349 279 206 152 118 63 55 29

23.0% 2,167 1,498 413 408 350 280 191 145 113 57 53 30

23.5% 2,036 1,457 415 398 332 266 192 142 111 58 51 22

24.0% 1,980 1,371 393 388 324 252 193 132 98 54 49 23

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales <$ 5 Mio.) Mortgage Revolving retail Other retail

92 4 Model-Based Measurement of Name Concentration Risk in Credit Portfolios



Table 4.2 Critical number of credits from that the exact solution at confidence level 0.995

exceeds the infinite fine granularity at confidence level 0.999 (see (4.50))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 5,499 3,885 997 1,019 786 678 464 329 255 165 143 123

3.5% 4,354 3,126 836 793 665 542 380 274 217 138 122 110

4.0% 3,428 2,508 701 666 564 428 308 227 184 118 103 94

4.5% 3,111 1,998 588 558 434 364 266 200 155 100 93 79

5.0% 2,436 1,830 490 466 404 308 230 175 138 92 83 70

5.5% 2,239 1,445 406 386 339 288 198 154 123 77 71 65

6.0% 1,724 1,338 380 361 283 244 170 135 109 74 69 57

6.5% 1,599 1,037 312 297 266 204 161 117 97 68 58 56

7.0% 1,489 968 294 280 220 193 138 112 85 62 57 50

7.5% 1,114 906 238 264 208 183 131 97 82 57 50 46

8.0% 1,044 681 225 214 197 152 111 93 72 52 46 42

8.5% 982 641 214 204 161 145 106 80 63 47 45 43

9.0% 925 605 203 194 153 119 102 77 61 46 39 41

9.5% 874 573 161 185 146 113 85 66 59 42 38 39

10.0% 621 543 154 147 140 109 82 64 51 38 37 38

10.5% 589 516 147 140 111 104 79 61 49 37 34 35

11.0% 559 368 141 134 107 100 76 52 48 36 31 30

11.5% 532 351 135 129 103 80 63 50 41 32 28 31

12.0% 507 335 130 124 99 77 61 49 40 32 30 28

12.5% 484 320 100 95 95 74 59 47 39 31 27 29

13.0% 463 306 96 92 91 72 57 46 38 28 29 26

13.5% 443 293 92 88 71 69 55 38 37 30 24 27

14.0% 425 281 89 85 68 67 44 37 31 27 26 24

14.5% 407 270 86 82 66 65 43 36 31 24 22 28

15.0% 261 260 83 79 64 50 42 35 30 21 23 21

15.5% 251 250 80 77 62 49 40 34 29 23 25 25

16.0% 242 241 77 74 60 47 39 33 24 23 21 22

16.5% 233 155 75 72 58 46 38 27 28 20 18 23

17.0% 224 149 55 70 56 44 37 26 23 22 22 19

17.5% 216 144 53 51 54 43 36 31 27 17 20 24

18.0% 209 139 51 49 53 42 28 25 22 19 18 20

18.5% 202 135 50 48 39 41 28 24 22 19 16 20

19.0% 195 130 48 46 37 40 27 24 18 16 16 21

19.5% 189 126 47 45 36 39 26 23 21 16 19 21

20.0% 183 122 46 44 35 38 26 23 21 18 17 17

20.5% 177 118 44 43 35 37 25 22 17 18 17 17

21.0% 172 115 43 41 34 27 24 22 20 14 15 18

21.5% 167 112 42 40 33 26 24 17 16 13 15 18

22.0% 162 108 41 39 32 26 23 21 16 15 13 19

22.5% 157 105 40 38 31 25 23 21 16 15 13 19

23.0% 153 102 39 37 30 24 22 16 15 15 13 14

23.5% 148 99 38 36 30 24 22 16 15 15 16 14

24.0% 144 97 37 36 29 23 16 16 15 13 11 15

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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factor r. In buckets with small probabilities of default as well as low correlation

factors, the idiosyncratic risk is relatively high, so that the portfolio must be

substantially bigger to meet the target. This means that in the worst case, a portfolio

must consist of at least 35,986 creditors to meet the assumptions of the ASRF

framework at an accuracy of 5%. The same tendency can also be found for the

target tolerance specification (4.50). We get critical numbers I
ðASRFÞ
c;abs ranging from

11 to 5,499 creditors (see Table 4.2), that are substantially lower compared to the

critical numbers of the target tolerance. Thus, the critical number I
ðfgÞ
c;abs is less

conservative. This is caused by the effect that an increase of the confidence level

for VaR calculations has a high impact, especially on risk buckets with low default

rates. However, since for all those obligors the ASRF assumptions (see Sect. 2.6)

still have to be valid, such big risk buckets may mainly be relevant for retail

exposures in practice. Furthermore, it should be mentioned that these portfolio

sizes are only valid for homogeneous portfolios. For heterogeneous portfolios,

these numbers can be considerably higher, especially because the exposure weights

differ between the obligors and thus concentration risk will occur.196 In order to get

an impression of real-world portfolio sizes, we refer to the data of the German

credit register used in D€ullmann and Erdelmeier (2009). The credit register con-

tains all bank loans exceeding €1.5 million. In September 2006, out of 1,360

reporting financial enterprises,197 there were in total 28 german banks which had at

least 1,000 registered bank loans. Even if there are also smaller loans that are not

included in the data, loans for corporate, sovereigns, and banks should mostly

exceed the critical size. Hence, having a look at the required number of credits in

Table 4.1, most bank portfolios cannot be treated as infinitely granular. Therefore,

an improvement of measuring the portfolio-VaR is indeed advisable. However,

it has to be mentioned that for portfolios with debtors incorporating low credit-

worthiness the ASRF solution is already sufficient for some hundred credits (or

even less).

4.2.2.3 Probing First-Order Granularity Adjustment

After auditing the adequacy of the ASRF solution (b) compared to the discrete,

“true” solution (a) in context of a homogeneous risk bucket, we now investigate

the accuracy of the first order granularity adjustment (solution (c)). Similar to

Sect. 4.2.2.2, we compare its accuracy with the discrete solution (a) but we

additionally relate its result to the ASRF solution (b).

For the first (conservative) number I
ð1st Order Adj:Þ
c;per , we compare the analytically

derived VaR including first order approximation (solution (c)) with the “true” VaR

196The case of heterogeneous portfolios will be analyzed in Sect. 4.2.2.5.
197Cf. Deutsche Bundesbank (2009).
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of the discrete, binomial solution (a), both on a 0.999 confidence level. Again,

we aim to meet a target tolerance of b and we get

I
ð1st Order Adj:Þ
c;per ¼ inf n :

VaR
ð1st Order Adj:Þ
0:999

~L
� �

VaR
ðNÞ
0:999

~L¼ 1
N

P

N

i¼1

1 ~Dif g
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; with b¼ 0:05:

(4.51)

Thus, any analytically derived VaR of a risk bucket which includes more credits

than I
ð1st Order Adj:Þ
c;per does not differ from the “true” numerically derived VaR by more

than 5%.

The results for I
ð1st Order Adj:Þ
c;per for homogeneous risk buckets with a specific PD/r-

combination are reported in Table 4.3. Obviously, the critical number varies from

7 to 6,100 credits. Compared to the ASRF solution (see Table 4.1 in Sect. 4.2.2.2),

the critical values drop by 83.04% at a stretch. Precisely, we find that the number

of credits that is necessary to ensure a good approximation of the “true” VaR is

significantly lower with adjustment (c) than without adjustment (b). For example, a

high quality retail portfolio (AAA) must consist of 5,027 compared to 26,051

credits if we neglect the first order adjustment. A medium quality corporate

portfolio (BBB) must contain 106 compared to 442 credits. Thus, the minimum

portfolio size should be small enough to hold for many real-world portfolios and we

come to the conclusion that the first order adjustment works fine even with our

conservative definition of a critical value.

Next, we relate the first order granularity adjustment (c) to the ASRF formula

(b). We do that by defining a critical value I
ð1st Order Adj:Þ
c;abs of credits similar to

definition (4.50), but this time we proclaim that the VaR of the ASRF solution

without first order granularity adjustment (b) at a confidence level of 0.999 should

not exceed the VaR with first order granularity adjustment (c) at a confidence level

of 0.995:

I
ð1st Order Adj:Þ
c;abs ¼ sup n : VaR

ðASRFÞ
0:999

~L
� �

<VaR
ð1st Order Adj:Þ
0:995

~L
� �

� �

: (4.52)

The confidence level of the ASRF solution is increased by a buffer of 4 basis

points, which should incorporate the idiosyncratic risk of relatively fine-grained

portfolios. If we use the first order granularity adjustment for approximating

the true risk, the idiosyncratic risk of a portfolio with at I
ð1st Order Adj:Þ
c;abs credits should

already be included in the confidence level buffer.

The critical numbers of credits I
ð1st Order Adj:Þ
c;abs are shown in Table 4.4. They

contain a range from 14 to 5,170. It is interesting to note that these critical values

do not differ widely from the numbers I
ðfgÞ
c;abs, where we compared the VaR of the

ASRF solution (b) with the “true” VaR using the numerical, time-consuming

discrete formula. Precisely, the average percentage difference between the critical
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Table 4.3 Critical number of credits from that the first order adjustment can be stated to be

sufficient for measuring the true VaR (see (4.51))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 6,100 4,227 879 833 693 519 337 228 152 89 63 42

3.5% 5,517 3,491 810 768 590 443 291 199 133 67 54 32

4.0% 5,027 3,192 688 653 503 413 251 174 127 60 49 28

4.5% 4,169 2,936 641 609 470 355 237 165 112 54 38 24

5.0% 3,846 2,456 546 519 401 334 205 132 107 45 37 22

5.5% 3,564 2,283 513 488 378 287 195 138 94 51 35 20

6.0% 3,317 2,129 484 460 358 272 169 121 83 46 33 20

6.5% 3,098 1,993 413 435 339 258 177 105 80 34 28 18

7.0% 2,902 1,872 392 373 322 246 154 111 77 40 29 18

7.5% 2,450 1,762 373 354 277 235 133 97 61 29 27 13

8.0% 2,309 1,494 355 338 264 203 128 84 59 35 25 16

8.5% 2,181 1,414 338 322 253 215 136 81 57 31 21 16

9.0% 2,065 1,341 323 308 242 186 118 79 55 23 23 16

9.5% 1,958 1,274 309 295 232 179 114 76 54 30 19 14

10.0% 1,861 1,212 266 253 199 172 110 74 58 22 20 14

10.5% 1,771 1,156 255 271 214 148 106 64 51 19 15 11

11.0% 1,689 1,103 245 234 206 143 92 62 44 23 15 11

11.5% 1,612 1,055 263 225 178 154 89 60 43 21 17 11

12.0% 1,541 1,010 227 217 171 133 86 52 51 18 19 11

12.5% 1,476 968 219 209 166 129 74 57 46 19 23 11

13.0% 1,414 928 211 202 160 125 81 49 40 15 12 12

13.5% 1,357 892 204 195 155 121 88 54 30 16 10 8

14.0% 1,303 858 197 188 167 117 68 41 34 17 8 8

14.5% 1,253 825 191 182 145 101 66 45 33 12 8 8

15.0% 1,206 795 185 176 141 110 64 56 28 14 15 8

15.5% 1,162 767 179 171 121 107 62 49 36 14 13 12

16.0% 1,120 740 154 166 118 104 69 37 31 16 13 9

16.5% 1,081 714 168 161 114 101 67 51 23 16 11 9

17.0% 1,044 690 145 156 125 87 58 35 30 9 11 9

17.5% 1,009 668 159 152 108 96 49 30 22 7 11 9

18.0% 976 646 154 131 105 83 55 39 18 7 9 9

18.5% 944 626 150 128 115 91 61 43 25 7 9 9

19.0% 914 606 146 124 112 79 53 28 21 13 9 9

19.5% 886 588 142 136 97 77 45 32 17 18 9 9

20.0% 859 570 123 118 95 75 44 36 20 14 9 9

20.5% 834 554 120 129 104 73 43 35 13 12 7 9

21.0% 809 538 117 112 90 63 42 30 16 10 7 9

21.5% 786 523 128 109 99 70 41 25 19 10 7 9

22.0% 764 508 111 106 86 77 51 29 22 8 7 9

22.5% 743 494 108 104 84 67 40 20 14 8 7 9

23.0% 722 481 119 114 92 57 39 36 11 8 7 9

23.5% 703 468 116 99 90 72 38 24 27 8 7 9

24.0% 684 456 101 97 88 55 32 16 18 8 7 9

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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Table 4.4 Critical number of credits from that the first order adjustment at confidence level 0.995

exceeds the infinite fine granularity at confidence level 0.999 (see (4.52))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 5,170 3,544 973 935 769 626 441 327 255 164 146 128

3.5% 4,029 2,773 774 744 615 501 356 265 209 136 122 109

4.0% 3,231 2,232 633 609 504 413 295 221 175 116 105 95

4.5% 2,650 1,836 528 508 422 347 249 188 150 101 91 85

5.0% 2,213 1,538 448 431 359 296 214 162 130 89 81 76

5.5% 1,875 1,307 385 371 310 256 186 142 114 79 72 69

6.0% 1,609 1,124 335 323 270 224 163 125 101 71 65 63

6.5% 1,395 977 295 284 238 198 145 112 91 64 60 59

7.0% 1,220 856 261 252 211 176 130 100 82 59 55 55

7.5% 1,075 757 233 225 189 158 117 91 74 54 50 51

8.0% 955 673 209 202 170 142 106 83 68 50 47 48

8.5% 853 602 189 182 154 129 96 75 62 46 44 45

9.0% 766 542 171 165 140 117 88 69 58 43 41 43

9.5% 691 490 156 151 128 108 81 64 53 40 38 41

10.0% 626 445 143 138 117 99 75 59 50 38 36 39

10.5% 570 405 131 127 108 91 69 55 46 36 34 37

11.0% 521 371 121 117 100 84 64 51 43 34 32 36

11.5% 477 340 112 108 92 78 60 48 40 32 31 34

12.0% 439 313 104 100 86 73 56 45 38 30 29 33

12.5% 404 289 96 93 80 68 52 42 36 29 28 32

13.0% 374 268 90 87 74 63 49 40 34 27 27 31

13.5% 346 248 84 81 70 59 46 37 32 26 26 30

14.0% 322 231 78 76 65 56 43 35 30 25 24 29

14.5% 299 215 74 71 61 52 41 33 29 24 24 28

15.0% 279 201 69 67 58 49 39 32 27 23 23 28

15.5% 261 188 65 63 54 47 36 30 26 22 22 27

16.0% 244 176 61 59 51 44 35 29 25 21 21 26

16.5% 229 165 58 56 48 42 33 27 24 20 20 26

17.0% 215 155 55 53 46 40 31 26 23 20 20 25

17.5% 202 146 52 50 43 38 30 25 22 19 19 25

18.0% 190 138 49 48 41 36 28 24 21 18 18 24

18.5% 180 130 46 45 39 34 27 23 20 18 18 24

19.0% 170 123 44 43 37 32 26 22 19 17 17 23

19.5% 160 116 42 41 36 31 25 21 19 17 17 23

20.0% 152 110 40 39 34 29 24 20 18 16 16 22

20.5% 144 105 38 37 32 28 23 19 17 16 16 22

21.0% 136 99 36 35 31 27 22 18 17 15 16 22

21.5% 129 94 35 34 29 26 21 18 16 15 15 22

22.0% 123 90 33 32 28 25 20 17 15 14 15 21

22.5% 117 85 32 31 27 24 19 17 15 14 15 21

23.0% 111 81 30 29 26 23 18 16 14 14 14 21

23.5% 106 78 29 28 25 22 18 15 14 13 14 21

24.0% 101 74 28 27 24 21 17 15 14 13 14 20

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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numbers of Tables 4.2 and 4.4 is less than 10%. That means that the diversification

behavior of the coarse grained solution and the first order approximation is very

similar, i.e. the first order adjustment is a good approximation of the idiosyncratic

risk of coarse grained portfolios.

4.2.2.4 Probing Second-Order Granularity Adjustment

Finally, we want to test the approximation if the (first- and) second-order adjust-

ment is added to the ASRF formula, leading to solution (d). Similar to Sects. 4.2.2.2

and 4.2.2.3, we firstly examine the VaR according to this new formula (d) in

comparison to the “exact” VaR from the coarse grained solution (a). Additionally,

we analyze its performance with respect to the ASRF solution.

Again, we calculate a critical number I
ð1st þ 2nd Order Adj:Þ
c;per of credits to test the

approximation accuracy with reference to the coarse grained formula (a) according

to the “percentaged” accuracy with a target tolerance of 5% by

Ið1stþ 2ndOrder Adj:Þ
c;per ¼ inf n :

VaR
ð1stþ 2ndOrder Adj:Þ
0:999

~L
� �
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ðNÞ
0:999

~L ¼ 1
N
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with b ¼ 0:05; (4.53)

using the (first- and) second-order adjustment as an approximation of the coarse-

grained portfolio.

The results are presented in Table 4.5. Now, the critical number of credits ranges

from 17 to 10,993. Compared to the ASRF solution (a), see Table 4.1 in Sect. 4.3.4.2,

the necessary number of credits to meet the requirements can be reduced by 66.5% on

average. Thus, the second-order adjustment is capable to detect idiosyncratic risk

caused by a finite number of debtors to a certain extent. However, if we compare the

results with the ones where only the first-order adjustment is used (see Table 4.3 in

Sect. 4.3.4.3), the second-order adjustment performs worse.

We are able to verify this result by analyzing the second-order adjustment (d) in

comparison to the exact ASRF solution (a). Therefore we introduce a critical number

I
ð1:þ2:OrderAdj: Þ
c;abs of credits, similar to the definition (4.52) in Sect. 4.3.4.3. We get

I
ð1st þ2nd Order Adj:Þ
c;abs ¼ sup n : VaR

ðASRFÞ
0:999

~L
� �

<VaR
ð1st þ2nd Order Adj:Þ
0:995

~L
� �

� �

: (4.54)

Thus, for each risk bucket with at least I
ð1st þ2nd Order Adj:Þ
c;abs credits the idiosyncratic

risk, measured by the second-order adjustment on a confidence level 0.995, is

included in the confidence level premium of 4 basis points of the ASRF solution

(on a confidence level 0.999).
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Table 4.5 Critical number of credits from that the first plus second order adjustment can be stated

to be sufficient for measuring the true VaR (see (4.53))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 10,993 7,338 1,796 1,770 1,417 1,107 746 522 392 222 185 130

3.5% 9,309 6,251 1,503 1,427 1,150 941 620 440 327 193 163 115

4.0% 7,494 5,077 1,260 1,252 1,014 802 534 384 280 167 140 103

4.5% 6,405 4,367 1,109 1,054 858 683 460 323 255 148 120 90

5.0% 5,864 3,768 979 930 761 609 414 293 225 127 115 83

5.5% 5,056 3,256 866 824 677 544 373 266 199 118 103 78

6.0% 4,362 3,021 767 730 603 486 321 242 182 107 94 70

6.5% 4,055 2,622 680 647 537 435 304 210 167 100 86 64

7.0% 3,509 2,452 641 610 478 390 260 191 147 90 76 63

7.5% 3,286 2,132 570 542 453 349 248 183 141 84 74 60

8.0% 2,844 2,006 505 481 404 332 237 158 123 79 67 55

8.5% 2,679 1,892 480 457 385 297 214 160 119 71 63 51

9.0% 2,529 1,649 457 406 343 284 193 146 109 69 57 49

9.5% 2,394 1,563 406 387 328 254 174 133 105 67 58 51

10.0% 2,077 1,484 388 370 292 243 168 128 91 60 50 42

10.5% 1,974 1,412 344 354 280 234 161 116 88 56 49 43

11.0% 1,879 1,231 330 314 269 209 145 106 81 52 48 41

11.5% 1,791 1,175 316 302 239 201 140 109 88 51 45 38

12.0% 1,710 1,123 304 290 230 194 126 99 76 52 41 39

12.5% 1,484 1,075 269 257 222 173 131 96 74 51 42 37

13.0% 1,421 1,030 259 248 214 167 127 87 63 43 43 34

13.5% 1,362 897 250 239 190 149 106 79 70 42 37 34

14.0% 1,307 861 241 230 184 144 111 76 64 39 38 31

14.5% 1,256 828 233 203 177 139 92 80 54 38 34 32

15.0% 1,208 797 206 197 172 135 97 67 61 33 35 28

15.5% 1,163 768 199 190 152 131 94 65 52 39 31 29

16.0% 1,120 741 193 184 147 127 84 74 51 34 34 30

16.5% 1,081 715 187 178 143 113 89 67 46 38 30 26

17.0% 938 690 181 173 152 120 73 56 45 33 28 26

17.5% 906 600 176 168 135 106 71 64 51 31 26 27

18.0% 876 646 155 163 131 103 69 58 43 32 24 28

18.5% 847 562 150 144 115 101 74 52 42 30 27 23

19.0% 820 544 146 140 124 98 72 51 41 26 25 23

19.5% 795 527 142 150 109 86 64 45 37 29 23 24

20.0% 770 511 138 132 106 93 57 44 33 27 26 25

20.5% 747 496 134 115 93 91 67 43 42 23 21 26

21.0% 725 482 131 125 101 80 60 39 38 21 24 26

21.5% 704 468 114 122 88 78 53 42 31 24 22 20

22.0% 684 455 124 119 96 68 57 41 34 22 22 20

22.5% 665 442 121 116 94 67 56 44 39 22 20 21

23.0% 647 430 106 101 82 73 44 32 30 20 17 22

23.5% 629 419 103 99 80 64 43 35 24 18 21 22

24.0% 613 408 101 108 78 62 43 38 29 21 18 23
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Table 4.6 Critical number of credits from that the first plus second order adjustment at confidence

level 0.995 exceeds the infinite fine granularity at confidence level 0.999 (see (4.54))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 4,285 2,942 810 778 640 521 367 272 214 140 125 114

3.5% 3,266 2,254 633 609 503 411 292 218 173 115 104 97

4.0% 2,560 1,776 508 489 406 333 238 180 143 97 89 84

4.5% 2,050 1,429 417 401 334 275 198 151 121 83 77 75

5.0% 1,671 1,170 347 335 279 231 168 128 103 73 68 67

5.5% 1,380 971 294 283 237 196 144 111 90 64 60 61

6.0% 1,153 815 251 242 203 169 124 96 79 57 54 56

6.5% 973 691 216 209 176 147 109 85 70 52 49 51

7.0% 827 590 188 182 153 128 96 75 62 47 44 48

7.5% 708 507 164 159 135 113 85 67 56 43 41 44

8.0% 610 439 145 140 119 100 76 60 50 39 38 42

8.5% 527 382 128 124 106 89 68 54 46 36 35 39

9.0% 458 333 114 110 94 80 61 49 42 33 32 37

9.5% 399 292 102 98 84 72 55 45 38 31 30 35

10.0% 349 257 91 88 76 65 50 41 35 29 28 33

10.5% 306 226 82 79 68 59 46 37 32 27 27 32

11.0% 268 200 74 72 62 53 42 34 30 25 25 31

11.5% 264 177 67 65 56 48 38 32 28 24 24 29

12.0% 271 156 60 59 51 44 35 29 26 22 22 28

12.5% 266 173 55 53 46 40 32 27 24 21 21 27

13.0% 257 172 50 48 42 37 30 25 22 20 20 26

13.5% 248 167 45 44 39 34 27 23 21 19 19 25

14.0% 238 162 41 40 36 31 25 22 20 18 18 24

14.5% 229 156 38 37 33 29 24 20 18 17 18 24

15.0% 219 150 34 34 30 26 22 19 17 16 17 23

15.5% 210 144 38 36 27 24 20 18 16 15 16 22

16.0% 201 139 38 36 28 23 19 17 15 15 15 22

16.5% 193 133 37 36 29 21 18 16 14 14 15 21

17.0% 185 128 37 35 29 22 16 15 14 13 14 21

17.5% 177 123 36 34 28 23 15 14 13 13 14 20

18.0% 170 118 35 33 28 23 14 13 12 12 13 20

18.5% 163 113 34 33 27 22 13 12 12 12 13 19

19.0% 156 109 33 32 26 22 15 11 11 11 12 19

19.5% 150 105 32 31 26 21 15 11 10 11 12 19

20.0% 145 101 31 30 25 21 15 10 10 11 12 18

20.5% 139 97 30 29 24 20 15 10 9 10 11 18

21.0% 134 94 29 28 24 20 14 9 9 10 11 18

21.5% 129 90 28 27 23 19 14 10 8 10 11 17

22.0% 124 87 27 26 22 19 14 10 8 9 10 17

22.5% 120 84 26 26 22 18 14 10 8 9 10 17

23.0% 115 81 26 25 21 18 13 10 7 9 10 16

23.5% 111 78 25 24 20 17 13 10 7 8 9 16

24.0% 108 75 24 23 20 17 13 10 7 8 9 16

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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The critical numbers presented in Table 4.6 range from 7 to 4,285. Obviously,

these results are considerably higher than those of Table 4.4 and therefore

the predefined target value of accuracy is reached with lower numbers of credits.

Thus, the idiosyncratic risk is underestimated with the second order adjustment

compared to the numerical “true” solution (a) (see the results in Sect. 4.2.2.2)

and is not measured with such a high accuracy as the first order adjustment

does (see Sect. 4.2.2.3). Concretely, this value is reduced by averaged 32.7%

credits.

To conclude, the second-order adjustment (d) converges faster to the asymptotic

value of the ASRF solution (b), which confirms the findings of Sect. 4.2.2.1. A

possible reason is that the VaR measure using the first order approximation may be

“corrected” into the direction of the ASRF solution by incorporating the second

order adjustment. The possibility of this behavior is given due to the alternating sign

in the derivatives of VaR; see (4.31).198 Thus, taking more derivatives into account

could solve the problem but would lead to even more uncomfortable equations.199

Despite these theoretical questions, it can be stated that in homogeneous portfolios,

an excellent approximation of the true VaR can be achieved with the granularity

adjustment.

4.2.2.5 Probing Granularity for Inhomogeneous Portfolios

The previous analyses showed that the granularity adjustment works fine for

homogeneous portfolios. In this section, we test if the approximation accuracy of

the presented general formulas will hold for portfolios consisting of loans with

different exposures and credit qualities. This means that the credits in the portfolio

vary in exposure weight and in probability of default, and we analyze if the

portfolio loss for coarse grained portfolios could still be quantified satisfactorily

by the granularity adjustment.

Concretely, we examine high quality portfolios with probabilities of default

ranging from 0.02 to 0.79% and lower quality portfolios with probabilities of

default ranging from 0.2 to 7.9%. Additionally, we define a basic risk bucket

consisting of 20 loans with exposures between €35 and 200 million.200 In order

to measure the portfolio size with respect to concentration risk, we use the effective

number of loans n* (see (2.87)), rather than the number of loans n. Consequently,
this effective number is more than 25% below the true number of credits.

198This is true not only for the first five derivatives but also for all following derivatives; see the

general formula for all derivatives of VaR in (4.213).
199However, we also have to take into consideration that the Taylor series is potentially not

convergent at all or does not converge to the correct value. For a further discussion see Martin

and Wilde (2002) and Wilde (2003).
200The used portfolio is based on Overbeck (2000), see also Overbeck and Stahl (2003), but

reduced to 20 loans to achieve more test portfolios with a small number of credits.
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A variation of portfolio size is reached by reproducing the loans of the basic risk

bucket so that portfolios with 40, 60, . . ., 400, 800, 1,600 and 4,000 loans result.

Using an asset correlation r ¼ 20% and a confidence level of 0.999, we compute

the granularity add-on with the presented first-order and second-order adjustment.

Because the exact value cannot be determined analytically for heterogeneous

portfolios, we compute the “true” VaR with Monte Carlo simulations using three

million trials.201 Finally, we compare this “true” VaR with the ASRF solution, so

that we receive the granularity add-on.

The simulated results for the granularity add-on for high and low quality

portfolios are presented in Fig. 4.3 (see the circles and dots). Therefore, the add-

on for the minimum size of 40 loans with 1=n� � 0:035 is 5.0% (6.2%) for the high

(low) quality portfolio. This is equal to a relative correction of +112.5% (+30.5%)

compared to a hypothetical infinitely fine grained portfolio. This shows again the

relatively high impact of idiosyncratic risk in small high quality portfolios. With

shifting to bigger sized portfolios, the effective number of credits shifts to zero and

High Quality, Monte Carlo

High Quality, 1st Order Adj.
High Quality, 1st + 2nd Order Adj.

Low Quality, 1st Order Adj.

Low Quality, 1st + 2nd Order Adj.

Low Quality, Monte Carlo
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Fig. 4.3 Granularity add-on for heterogeneous portfolios calculated analytically with first-order

(solid lines) and second-order (dotted lines) adjustments as well as with Monte Carlo simulations

(þ and o) using three million trials

201Due to the high number of trials, which corresponds to 3,000 hits in the tail for a confidence

level of 0.999, the simulation noise should be negligible.

102 4 Model-Based Measurement of Name Concentration Risk in Credit Portfolios



the granularity add-on decreases almost exactly linear in terms of 1/n* – even for

high quality portfolios. This result is contrary to Gordy (2003), who exhibits

a concave characteristic of the granularity add-on. This might be due to the fact

that Gordy (2003) uses a CreditRisk+ framework, whereas we analyze the effect of

the granularity with the CreditMetrics one-factor model that is consistent with

the Basel II assumptions. Summing up, the granularity add-on in Fig. 4.3 can be

approximated with a linear function. Indeed, the (linear) first order adjustment is

a very good approximation for heterogeneous portfolios of high as well as low

quality. Just like in the previous sections, the second-order adjustment leads to a

reduction of the granularity add-on. Thus, it can be characterized as less conserva-

tive, but comparing the results we strongly recommend the first-order adjustment.

4.3 Measurement of Name Concentration Using the Risk

Measure Expected Shortfall

4.3.1 Adjusting for Coherency by Parameterization
of the Confidence Level

As shown in Sect. 2.2.3, the commonly used VaR is not coherent because it is not

necessarily subadditive. As long as we stay in the ASRF framework, this charac-

teristic is not problematic because in this context, the VaR is exactly additive.202

However, if we leave the ASRF framework, this behavior is not guaranteed

anymore.203 Nevertheless, many contributions that deal with concentration risk in

the context of Basel II use the VaR to quantify credit risk without questioning the

risk measure (possibly to be consistent with the ASRF framework), even if the

subadditivity could get problematic if concentration risk is considered.204 Thus, it

could be beneficial to change the measure of risk, e.g. to use the coherent Expected

Shortfall (ES). However, we cannot simply replace the VaR with the ES since the

resulting difference in the capital requirements would not only stem from a more

convenient measurement of concentration risk but also from the fact that the ES

exceeds the VaR by definition. Against this background, we propose a procedure

how the ES can be used instead of the VaR for the measurement of credit risk by

accurately choosing a different confidence level. Based on this result, we analyze

the performance of the ASRF formula, the first-order, and the second-order granu-

larity adjustment when the ES is used instead of the VaR in Sect. 4.3.4 after

deriving both adjustment formulas in Sect. 4.3.2.

202Cf. Sect. 2.6.
203This is true for a violation of both the granularity and the single risk factor assumption.
204See e.g. Heitfield et al. (2006), Cespedes et al. (2006), D€ullmann (2006), as well as D€ullmann

and Masschelein (2007).
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Before we change the risk measure, we will study the characteristics of the VaR

for credit portfolios and analyze the need for using the ES. For our analyses, we

continue to omit the first assumption of the ASRF framework leading to a finite

granularity and calculate the VaR as well as the ES within the binomial model of

Vasicek and the ASRF framework.

We start with computing the VaR at a confidence level a ¼ 0:999 for non-

asymptotic portfolios with PD ¼ 0.5% and r ¼ 20%. In Fig. 4.4, the VaR for

the ASRF framework and for the Vasicek binomial model is plotted in the cases of

n¼ 1 to n¼ 300 homogeneous credits. The VaR for an infinite number of credits is

9.1%. For a finite number of credits, the risk is higher because the unsystematic risk

cannot be diversified. The problem is that the risk should be monotonously decreas-

ing with a higher number of credits (“monotonicity of specific risk-property”205)

but this behavior is not reflected by the VaR as a risk measure. Instead, we find that

the VaR follows a downward sloping “saw-toothed” pattern. Although the sub-

additivity axiom is not violated in the example, it is obvious that the measured risk

should not increase with a higher number of credits and thus a better diversification.

It is also possible to construct superadditive examples with a different parameter

setting but this example gives a clear demonstration that it is problematic to use the

VaR if there is concentration risk such as name concentration.

The saw-toothed pattern can also be explained intuitively: In the 99.9% worst-

case scenario one credit out of 1, 2, 3, 4, or 5 credits defaults, which leads to a VaR

of 1, 1/2, 1/3, 1/4, or 1/5. If the size of the portfolio is increased further, one

additional credit defaults in the 99.9% scenario. Thus, the VaR increases from

1=5 ¼ 20% to 2=6 ¼ 33:�3%. If additional credits are added to the portfolio, the
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Fig. 4.4 Value at Risk in the ASRF and the Vasicek model

205See Albanese and Lawi (2004), p. 215, for this property of a reasonable risk measure.
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VaR will increase until a third credit defaults in the considered 99.9% scenario, and

so on. From a probabilistic perspective, the demonstrated problems are mainly a

result of the deviation for discrete distributions P½~L � VaRað~LÞ� � a> 0, which is

mostly decreasing with additional credits but jumps to a higher value when the

difference would (theoretically) go below zero.206 Against this background, it could

be tried to define the VaR differently from the common definition of the (lower)

VaR (2.12). Also the upper VaR definition (2.13) does not solve the problem.

However, if the VaR was defined as the maximal loss in the best 100 � a% scenarios

VaRð�Þ
a

~L
� � ¼ sup l 2 R jP ~L � l

� �

< a
� �

(4.55)

instead of the minimal loss in the worst 100 � ð1� aÞ%, we have the contrary case

of a negative deviation P ~L � VaR
ð�Þ
a

h i

� a< 0. If we rewrite the common VaR

definition as

VaRðþÞ
a

~L
� � ¼ inf l 2 R jP ~L � l

� � � a
� � ¼ sup l 2 R jP ~L< l

� �

< a
� �

; (4.56)

it is obvious to see that the VaR from definition (4.55) is always below the VaR

from definition (4.56). In the considered case of n homogeneous credits the differ-

ence between both definitions always equals207

VaRðþÞ
a � VaRð�Þ

a ¼ 1

n
: (4.57)

As the positive deviation pðþÞ :¼ P ~L � VaR
ðþÞ
a

h i

� a> 0 is high when the

negative deviation pð�Þ :¼ P ~L � VaR
ð�Þ
a

h i

� a< 0 is small, we could define an

interpolated Value at Risk VaRðintÞ as follows:

VaRðintÞ
a ¼

P ~L � VaR
ðþÞ
a

h i

� a

P ~L � VaR
ðþÞ
a

h i

� P ~L � VaR
ð�Þ
a

h iVaRð�Þ
a

þ
a� P ~L � VaR

ðþÞ
a

h i

P ~L � VaR
ðþÞ
a

h i

� P ~L � VaR
ð�Þ
a

h iVaRðþÞ
a

¼ pðþÞ

pðþÞ � pð�Þ VaR
ð�Þ
a � pð�Þ

pðþÞ � pð�Þ VaR
ðþÞ
a : (4.58)

206Of course the definition of the VaR does not allow a negative deviation and the VaR jumps to a

higher value instead.
207See Appendix 4.5.11.
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In Fig. 4.5, this interpolated VaR as well as VaR
ðþÞ
a , VaR

ð�Þ
a and the ASRF

solution are plotted. We find that the saw-toothed pattern, which is contradictory to

the “monotonicity of specific risk-property”, almost vanishes for the interpolated

VaR, especially if we do not consider a very small number of credits. Thus, against

the background of name concentration risk, definition (4.58) seems to be much less

problematic than the common VaR definition (4.56).

For comparison, we also compute the ES for the identical portfolio setting. For

calculation of the ES within the Vasicek model, we have to apply (2.76). The ES in

the Basel II framework can be calculated with208

ESðBaselÞa
~L
� � ¼ 1

1� a

X

n

i¼1

wi � ELGDi � F2 �F�1ðaÞ;F�1ðPDiÞ; ffiffiffiffi

ri
p� �

; (4.59)

which is based on the identity (2.93) of the ES within the ASRF framework and the

conditional PD of the Vasicek model. Thus, (4.59) relies on the same assumptions

as the Basel II formula (2.97) but uses the ES instead of the VaR for measuring

the risk. As illustrated in Fig. 4.6, the ES satisfies the “monotonicity of specific
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208See Appendix 4.5.12.
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risk-property”. This is one relevant advantage compared to the VaR, even if the

VaR definition (4.58) is applied. Although this new VaR definition is already

an improvement compared to the common definition, there are still some (minor)

violations of the “monotonicity of specific risk-property”, and the lack of subaddi-

tivity is still existent. Against this background, it could be beneficial to change

the risk measure from VaR to ES if the portfolio contains concentration risk.209

However, the measured economic capital would be significantly higher if it is

determined on the basis of the ES instead of the VaR (by the use of the same

confidence level), what is not the intended consequence of the change of the risk

measure. In our example even the ASRF solution rises from 9.1% to 11.81%.

Instead, we would only like to use the appreciated properties for concentration

risk without being bound to increase the amount of economic capital. Therefore, the

confidence level will be adjusted as described subsequently.

If we change the risk measure, we have to ensure that the new risk measure (the

ES), on the one hand, is consistent with the framework presented in Pillar 2 of Basel

II to get meaningful results for additional capital requirements stemming from

concentration risk. On the other hand, the new risk measure should still match the

capital requirements of Pillar 1 if the portfolio under consideration fulfills the

assumptions of the ASRF framework; i.e. in the context of the ASRF framework,

the capital requirements should not differ, regardless of whether the risk is mea-

sured by the VaR or by the ES. Therefore, we examine the VaR at the given
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Fig. 4.6 Expected Shortfall in the ASRF and the Vasicek model

209As mentioned in Sect. 2.6, the VaR is exactly additive and therefore unproblematic in the

context of the ASRF framework.
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confidence level 0.999 for several (infinitely granular) bank portfolios of different

quality. As a next step, we determine the confidence level of the ES that is necessary

to match the results for both risk measures. We define this ES-confidence level

a ð¼ aðESÞÞ implicitly as

ESðBaselÞa
~L
� � ¼ VaR

ðBaselÞ
0:999

~L
� �

; (4.60)

with VaR
ðBaselÞ
0:999 given by (2.97) and ES

ðBaselÞ
a presented in (4.59).

Firstly, we investigate the extreme cases that all creditors of a bank have a rating

of (I) AAA or (VII) CCC.210 As can be seen in Table 4.7, the ES-confidence level

must be in a range between 99.67% and 99.74%. Using these confidence levels, the

economic capital is almost identical, regardless of whether the VaR or the ES is used.

Additionally, we use five portfolios with different credit quality distributions

(very high, high, average, low, and very low) that are visualized in Fig. 4.7.211 All

resulting confidence levels are between 99.71% and 99.73% with mean 99.72%.

Even if there is some interconnection between the confidence level and the portfolio

quality, an ES-confidence level of a ¼ 99:72% seems to be accurate for most real-

world portfolios.

4.3.2 Considering Name Concentration with the Granularity
Adjustment

4.3.2.1 First-Order Granularity Adjustment for One-Factor Models

As argued in Sect. 4.3.1, the VaR can be a problematic risk measure if the assump-

tions of the ASRF framework, which includes the infinite granularity assumption (A)

Table 4.7 Confidence level

for the ES so that the ES is

matched with the VaR with

confidence level 0.999 for

portfolios of different quality

Portfolio type/quality VaR0.999 and

ESa (%)

Confidence level

a (ES) (%)

(I) AAA only 0.57 99.672

(II) Very high 6.12 99.709

(III) High 7.59 99.711

(IV) Average 12.94 99.719

(V) Low 20.89 99.726

(VI) Very low 23.30 99.727

(VII) CCC only 57.00 99.741

210We use the idealized default rates from Standard and Poors, see Brand and Bahar (2001),

ranging from 0.01% to 18.27%, but the results do not differ widely for different values.
211The portfolios with high, average, low, and very low quality are taken from Gordy (2000). We

added a portfolio with very high quality.
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of Sect. 2.6, are not fulfilled anymore. Based on the methodology of Sect. 4.3.1, we

know which confidence level is adequate if credit risk and especially concentration

risk is measured on the basis of the more convenient ES instead of the VaR.

However, the approximation formulas of Sect. 4.2.1 are only valid for the VaR.

Thus, the ES-based granularity adjustment formulas will be derived subsequently.

While the first-order granularity adjustment is already known in the literature, the

second-order adjustment is a new result. The principle behind the granularity

adjustment remains unchanged, regardless of whether the VaR or the ES is used

as the risk measure. Thus, using the abbreviation

~L ¼ E ~L j ~x� �þ ~L� E ~L j ~x� �� � ¼: ~Y þ l ~Z; (4.61)

we perform a Taylor-series expansion around the systematic loss at l ¼ 0,

leading to

ESa ~L
� � ¼ ESa ~Y þ l ~Z

� �

¼ ESa ~Y
� �þ l

dESa ~Y þ l ~Z
� �

dl

" #

l¼0

þ l2

2!

d2ESa ~Y þ l ~Z
� �

dl2

" #

l¼0

þ � � � þ lm

m!

dmESa ~Y þ l ~Z
� �

dlm

" #

l¼0

þ � � � : (4.62)
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Fig. 4.7 Portfolio quality distributions
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According to Sect. 4.2.1.1, the first-order adjustment can be calculated as

the Taylor series expansion up to the quadratic term. With respect to Wilde

(2003) and Rau-Bredow (2004), the needed first and second derivative of ES

are given as212

dESa ~Y þ l ~Z
� �

dl

�

�

�

�

�

l¼0

¼ E ~Z j ~Y> qa ~Y
� �� �

; (4.63)

d2ESa ~Y þ l ~Z
� �

d2l

�

�

�

�

�

l¼0

¼ fY qa ~Y
� �� �

V ~Z j ~Y ¼ qa ~Y
� �� �

1� a
: (4.64)

Similar to the VaR, the first derivative is zero:

E ~Z j ~Y> qa ~Y
� �� � ¼ 1

l
� E ~L� E ~L j ~x� �j ~Y> qa ~Y

� �� �

¼ 1

l
� E ~L j ~Y> qa ~Y

� �� �� 1

l
� E ~L j ~Y> qa ~Y

� �� � ¼ 0: (4.65)

With

~Y ¼ qa ~Y
� �

, ~x ¼ q1�a ~xð Þ (4.66)

and

l2 � V ~Z j ~Y� � ¼ V l ~Z j ~Y� � ¼ V ~L� ~Y j ~Y� � ¼ V ~L j ~Y� �

; (4.67)

the quadratic term of the Taylor series expansion (4.62) is equivalent to

Dl1 ¼ l2

2

fY qa ~Y
� �� �

V ~Z j ~Y ¼ qa ~Y
� �� �

1� a

 !

¼ � 1

2

fY qa ~Y
� �� �

V ~L j ~x ¼ q1�a ~xð Þ� �

1� a
: (4.68)

Using213

fYðyÞ ¼ �fxðxÞ 1

dy dx=
; (4.69)

212The derivatives of ES are derived in Appendix 4.5.13 and 4.5.14.
213Cf. (4.8).
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the first-order granularity adjustment results in

ESðnÞa � ESðASRFÞa þ Dl1 ¼: ESð1st Order Adj:Þa

with Dl1 ¼ � 1

2 1� að Þ
fxðxÞV ~L j ~x ¼ q1�a ~xð Þ� �

d
dxE

~L j ~x ¼ x
� �

�

�

x¼q1�a ~xð Þ
: (4.70)

Analogous to the VaR-based first-order adjustment, the ES-based term Dl1 is

linear in terms of 1/n, which means that the measured idiosyncratic risk component

is halved if the number of credits is doubled. Furthermore, the adjustment formula

takes the conditional variance into consideration but neglects all higher conditional

moments. Thus, incorporating the add-on formula (4.70) leads to a reduction of the

error from O(1/n) to O(1/n2).

4.3.2.2 First-Order Granularity Adjustment for the Vasicek Model

It is straightforward to calculate the ES-based granularity adjustment for the

Vasicek model. This means that the conditional PD is assumed to be given by

piðxÞ ¼ F
F�1ðPDiÞ � ffiffiffiffi

ri
p � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

(4.71)

and the systematic factor is standard normally distributed, which is analogous to

Sect. 4.2.1.2. If we want to calculate the granularity adjustment (4.70), we can use

the expression for the conditional variance and the derivative of the conditional

expectation dm1;c dx= from Sect. 4.2.1.2. This directly leads to the formula for the

ES-based granularity adjustment within the Vasicek model:

Dl1 ¼ � 1

2 1� að Þ
’�2;c

dm1;c dx=

�

�

�

�

x¼F�1 1�að Þ

¼ ’ F�1 1� að Þ� �

2 1� að Þ

P

n

i¼1

w2
i � ELGD2

i þ VLGDi

� � � F zið Þ � ELGD2
i � F2 zið Þ� �

P

n

i¼1

wi � ELGDi �
ffiffiffi

ri
p
ffiffiffiffiffiffiffiffi

1�ri
p � ’ zið Þ

;

(4.72)

with zi ¼ F�1 PDið Þþ ffiffiffi

ri
p

F�1 að Þ
ffiffiffiffiffiffiffiffi

1�ri
p , which can be simplified for homogeneous portfolios to

Dl1 ¼ 1

2n

’ F�1 1� að Þ� �

1� að Þ
ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

ffiffiffi

r
p FðzÞ

’ðzÞ
ELGD2 þ VLGD

ELGD
� ELGD � FðzÞ

	 


;

(4.73)

with z ¼ F�1 PDð Þþ ffiffi

r
p

F�1 að Þ
ffiffiffiffiffiffiffi

1�r
p .
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4.3.2.3 Second-Order Granularity Adjustment for One-Factor Models

In order to reduce the approximation error for portfolios consisting of a small

number of credits, additional elements of the Taylor-series expansion (4.62)

will be calculated and analyzed subsequently. Thus, we derive all terms of order

O(1/n2), which is analogous to Sect. 4.3.2.3 for the VaR-based granularity adjust-

ment. As a consequence, not only the conditional variance but also the conditional

skewness is taken into account. The resulting expression for the ASRF solution

including the second-order granularity adjustment Dl2 is

VaRð1st þ 2nd Order Adj:Þ
a ¼ VaRðASRFÞ

a þ Dl1 þ Dl2; (4.74)

where Dl2 represents the O(1/n2) elements of (4.62). We already know from

Appendix 4.5.8 that the third and a part of the fourth element of the Taylor series

are the relevant terms for the second-order adjustment.214 As can immediately be

seen from the Taylor series expansion (4.62), the third and the fourth derivatives

of ES are required for the calculation of the additional terms. Based on the

formula for all derivatives of VaR, it is possible to determine a formula for

arbitrary derivatives of ES. This general formula is derived in Appendix 4.5.13,215

but for our purposes it is sufficient to use a formula for the first five derivatives

of ES:216

dmESa ~Y þ l ~Z
� �

dlm

�

�

�

�

�

l¼0

¼ �1ð Þm � 1

1� a
� dm�2 mm ~Z j ~Y ¼ y

� �

fYðyÞ
� �

dym�2

 

� kðmÞ � 1

fYðyÞ



� d m2 ~Z j ~Y ¼ y
� �

fYðyÞ
� �

dy
� d

m�3 mm�2
~Z j ~Y ¼ y
� �

fYðyÞ
� �

dym�3

#!
�

�

�

�

�

y¼qa ~Yð Þ
;

(4.75)

with kð1Þ ¼ kð2Þ ¼ 0; kð3Þ ¼ 1; kð4Þ ¼ 3, and kð5Þ ¼ 10.

With these derivatives and due to

lm � mm ~Z j ~Y ¼ y
� �

�

�

y¼qa ~Yð Þ ¼ �m ~L j ~Y ¼ y
� �

�

�

y¼qa ~Yð Þ ¼: �mðyÞjy¼qa ~Yð Þ; (4.76)

214The explanations regarding the order of the derivatives of VaR in Appendix 4.5.8 are valid for

the derivatives of ES, too.
215See also Wilde (2003).
216See Appendix 4.5.14.
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the second-order adjustment for one-factor models is given as

Dl2 ¼ �1ð Þ3
3!

1

1� a
d �3ðyÞfYðyÞð Þ

dy


 �

þ �1ð Þ4
4!

1

1� a
�3

1

fYðyÞ �
d �2ðyÞfYðyÞð Þ

dy
� d �2ðyÞfYðyÞð Þ

dy

	 

 �
�

�

�

�

y¼qa ~Yð Þ

¼ � 1

6 1� að Þ
d
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�3ðyÞfYðyÞð Þ


 �

� 1

8 1� að Þ
1

fYðyÞ
d
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�2ðyÞfYðyÞð Þ


 �2
�

�

�

�

�

y¼qa ~Yð Þ
:

(4.77)

Using fY ¼ � fx
dy dx= and recalling that �mðyÞjy¼qað ~YÞ ¼ �mð~L j ~x ¼ xÞ��

x¼q1�að~xÞ¼: �m;c
�

�

x¼q1�að~xÞ (cf. (4.9)), this leads to

Dl2 ¼ 1

6 1� að Þ
1

dy dx=

d

dx

�3;c fx

dy dx=

	 


þ 1

8 1� að Þ
dy dx=

fx

1

dy dx=

d
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 �2
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1
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d
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 !
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d
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�2;c fx

dm1;c dx=

 !" #2
�

�

�

�

�

�

x¼q1�a ~xð Þ

; (4.78)

which is our result for the ES-based second-order granularity adjustment in general

form. As mentioned before, this adjustment formula is of order O(1/n2) because
both the conditional skewness and the squared conditional variance are of this

order.

4.3.2.4 Second-Order Granularity Adjustment for the Vasicek Model

As in Sect. 4.3.2.2 for the first-order adjustment, we now specify the second-order

adjustment for the Vasicek model. Thus, we use the conditional PD of the Vasicek

model

piðxÞ ¼ F
F�1ðPDiÞ � ffiffiffiffi

ri
p � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

(4.79)
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and assume that the systematic factor is normally distributed. Due to the latter

assumption, the second-order granularity adjustment (4.78) can be expressed as

Dl2 ¼ 1

6 1� að Þ
1

dm1;c dx=

d

dx

�3;c’

dm1;c dx=

 !

þ 1

8 1� að Þ
1

’

1

dm1;c dx=

d

dx

�2;c’

dm1;c dx=

 !" #2
�

�

�

�

�

�

x¼F�1ð1�aÞ
¼: Dl2;1 þ Dl2;2

�

�

x¼F�1ð1�aÞ: (4.80)

As presented in Appendix 4.5.15, this leads to a second-order adjustment of

Dl2 ¼ 1

6 1� að Þ
’

dm1;c dx=
� �2

d�3;c
dx

� �3;c x� d2m1;c dx2
�

dm1;c dx=

 !" #

þ 1

8 1� að Þ
’

dm1;c dx=
� �3

d�2;c
dx

� �2;c x� d2m1;c dx2
�

dm1;c dx=

 !" #2
�

�

�

�

�

�

x¼F�1ð1�aÞ

:

(4.81)

The required expressions for the conditional moments and the corresponding

derivatives have already been determined in Sect. 4.2.1.4. Thus, we only have to

insert the terms (4.37)–(4.47) into (4.81), which can easily be calculated with

standard computer applications.

4.3.3 Moment Matching Procedure for Stochastic LGDs

Subsequently, we will study the accuracy of the ASRF formula and of the granu-

larity adjustment for the risk measure ES in order to compare the capability of

measuring name concentrations in comparison with the VaR (cf. Sect. 4.2.2).

However, before we perform the corresponding numerical analyses, we deal with

the modeling of stochastic LGDs. Based on this, we can perform our numerical

analyses of the ES-based formulas not only for constant LGDs217 but also for

stochastic LGDs. This will show to which degree the accuracy of the ASRF

framework and of the granularity adjustments are affected by this additional source

of uncertainty. In order to incorporate a realistic degree of uncertainty, the proba-

bility distribution of LGDs will not be chosen on an ad-hoc basis, but different

density functions will be parameterized in a way that mean and standard deviation

217Even if the calculations were based on the portfolio gross loss and thus on an LGD of 100%, the

results remain identically for every constant LGD as the numerator and the denominator of the

analyzed expressions are affected to the same degree.
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will agree with empirical data reported by Schuermann (2005). These density

functions, which are typically mentioned in the literature for modeling LGDs, are

a normal distribution, a log-normal distribution, a logit-distribution, and a beta-

distribution. This moment-matching procedure will be performed for senior

secured, senior unsecured, senior subordinated, subordinated, as well as junior

subordinated loans. As a next step, the 25%-, 50%-, and 75%-quantiles will be

calculated for each of the parameterized distributions. Finally, the distribution with

the smallest averaged difference between the calculated and the empirical quantiles

will be chosen for the numerical analyses using the parameter setting for senior

unsecured loans.

A typical shape of a recovery-rate-distribution, which is the distribution of

1�LGD, can be seen in Fig. 4.8. The presented recovery rates correspond to

2,023 defaulted corporate bonds and loans from Moody’s Default Risk Service

Database. Approximately 88% of these instruments were issued by corporations

domiciled in the United States.218 In the presented case, the distribution is right-

skewed, which means that there are many defaults with rather low recovery rates

and few defaults with high recovery rates. While in most cases the recovery rate is

between 0 and 100%, it is not necessarily bounded between these values. The

demonstrated recovery rates of more than 100% appear if the interest rate at the

time of recovery is lower than the coupon rate.219 As mentioned in Sect. 2.2.1,
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Fig. 4.8 Probability distribution of recovery rates for corporate bonds and loans, 1970–2003. See

Schuermann (2005), p. 14

218Cf. Schuermann (2005), p. 22, footnote 8.
219Cf. Schuermann (2005), p. 22, footnote 11.
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the case of recovery rates below 0% can occur due to workout costs. Since the attempt

to recover a (part of a) loan is costly, the recovery rate is lower than 0% if the recovery

cash flows are smaller than the workout costs. Even if this case is not presented in

Fig. 4.8, it is practically more relevant than recovery rates of more than 100% as

workout costs always occur whereas the other effect is if at all unsystematic.220

Nonetheless, the mass of the distribution is between 0 and 100%, so that it can be

beneficial to choose a probability distribution which is bounded between these values.

In the literature, there are different proposals for the choice of an LGD distribu-

tion. In the context of modeling LGDs that depend on a systematic factor,221 Frye

(2000) used the normal distribution. One point of criticism is that this distribution is

symmetric and cannot describe the typically skewed LGDs. Against this back-

ground, Pykhtin (2003) chose the lognormal distribution. Schönbucher (2003)

applied the logit-normal distribution, which is bounded between 0 and 1. As

mentioned above, LGDs do not necessarily fulfill this characteristic but the distri-

bution can almost be seen as bounded in this interval. A further common LGD

distribution that is bounded in this interval is the beta distribution,222 which is for

example used in CreditMetricsTM.223 All of these distributions depend on two

parameters. Thus, we can parameterize all of these distributions by matching the

first two moments with the empirical distribution.

The probability density function of a normally distributed random variable ~X is

given by

fXðxÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

2ps2
p exp � x� mð Þ2

2s2

 !

; (4.82)

with mean m and standard deviation s, that is ~X 	 Nðm; s2Þ. The quantiles qa of a
normal distribution with parameters m and s can be calculated as

P ~X � qa
� � ¼ F

qa � m
s

� �

¼ a

, qa � m
s

¼ F�1 að Þ
, qa ¼ mþ s � F�1 að Þ: (4.83)

220Probably, the data used to generate the figure did not include workout costs and therefore

underestimate the true economic loss. Furthermore, the choice of the discount rate influences the

effect of negative LGDs: If the recovery cash flows are discounted by the contractual rate, as

required by IFRS and as proposed by the Basel II framework, a complete recovery without

workout costs leads to a recovery rate of 100%, which shows that negative LGDs are not relevant

at all.
221The issue of interconnections between LGDs and PDs via a systematic factor is not in the scope

of this analysis.
222Cf. Altman et al. (2005), p. 46.
223Cf. Gupton et al. (1997), p. 80.
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If a random variable ~X is normally distributed with ~X 	 NðmX; s2XÞ, the trans-

formation ~Y ¼ e
~X leads to a lognormally distributed variable ~Y.224 The density

function is

fYðyÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

2ps2X
p

y
exp � ln y� mXð Þ2

2s2X

 !

: (4.84)

In order to parameterize the distribution, the parameters mX and sX have to be

expressed as a function of the known mean m and standard deviation s. Using the

well-known moments of a lognormal distribution225

m ¼ exp mX þ 1

2
s2X

	 


and s2 ¼ ðexpðs2XÞ � 1Þ � expð2mX þ s2XÞ; (4.85)

we obtain

s2 ¼ exp s2X
� �� 1

� � � exp 2mX þ s2X
� �

, s2 ¼ exp s2X
� �� 1

� � � exp mX þ 1

2
s2X

	 
2

, s2 ¼ exp s2X
� �� 1

� � � m2

, s2X ¼ ln
s2

m2
þ 1

	 


(4.86)

and

m ¼ exp mX þ 1

2
s2X

	 


, mX ¼ ln m� 1

2
s2X

, mX ¼ ln m� 1

2
ln

s2

m2
þ 1

	 


: (4.87)

As the logarithm of a lognormally distributed variable is normally distributed

with mean mX and standard deviation sX, the cumulative distribution function F(y)
can be expressed in terms of the standard normal distribution:

FYðyÞ ¼ F
ln y� mX

sX

	 


: (4.88)

224See also Sect. 2.3.
225Cf. Bronshtein et al. (2007), p. 760, (16.80).
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Similar to (4.83), this leads to

F
ln qa � mX

sX

	 


¼ a

,qa ¼ exp mX þ sX � F�1 að Þ� �

: (4.89)

A logit-normal distribution results from a normally distributed variable ~X with

~X 	 NðmX; s2XÞ, which is transformed by the logit function ~Y ¼ e
~X
�ð1þ e

~XÞ: The
transformation assures that the transformed variable is bounded to [0, 1]. As shown

in Appendix 4.5.16, the probability density function is given as

fYðyÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

2ps2X
p exp � ln 1 y= � 1ð Þ þ mXð Þ2

2s2X

 !

1

y 1� yð Þ : (4.90)

Since an analytical determination of mean and standard deviation is not obvious,

the parameterization will be done numerically. For this purpose, the moments will

be computed for different mX/sX-combinations until the deviation of both para-

meters from the empirical data is less than 10–4. The corresponding quantiles will

be determined via numerical integration of (4.90).

The density of a beta distribution with shape parameters a; b> 0 can be

defined as

fXðxÞ ¼ 1

B a; bð Þ x
a�1 1� xð Þb�1; (4.91)

where the beta function Bða; bÞ is defined as

Bða; bÞ ¼
ð

1

0

ta�1 1� tð Þb�1dt (4.92)

or as

Bða; bÞ ¼ G að ÞG bð Þ
G aþ bð Þ (4.93)

using the gamma function Gð�Þ.226 With mean and variance

m ¼ a
aþ b

and s2 ¼ ab

ðaþ bÞ2ð1þ aþ bÞ; (4.94)

226Cf. Schönbucher (2003), p. 147 f.
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the beta distribution can be parameterized using the following shape parameters

m ¼ a
aþ b

;

,b ¼ a
m
� a; (4.95)

and

s2 ¼ ab

aþ bð Þ2 1þ aþ bð Þ

,s2 ¼ a2 1 m= � 1ð Þ
a m=ð Þ2 1þ a m=ð Þ

,s2 ¼ m2 1� mð Þ
mþ að Þ

,a ¼ m2 1� mð Þ
s2

� m: (4.96)

Similar to the logit-normal distribution, the quantiles of the beta distribution will

be determined via numerical integration of (4.91).

As mentioned above, the different distribution functions will be parameterized

using the data for corporate bonds and loans reported by Schuermann (2005). These

data contain information about the empirical mean and standard deviation as well as

the 25%-, 50%-, 75%-quantiles, and the number of observations N of recovery rates

for different seniorities (see Table 4.8).227 As expected, the average recovery rate as

well as the quantiles of the recovery rate distribution are mostly the higher, the more

senior the debt instrument.

In Tables 4.9–4.12, the determined parameters, which lead to a matching of

moments, of the four considered distributions are reported for each of the senio-

rities. Furthermore, the corresponding quantiles q̂ that result for these distributions

are reported in the respective tables. The root mean squared errors (RMSE) are

Table 4.8 Recovery rates by seniority, 1970–2003a

Seniority Mean m Std. dev. s q0.25 (%) q0.5 (%) q0.75 (%) N

Senior secured 0.543 0.258 33.00 53.50 75.00 433

Senior unsecured 0.387 0.278 14.50 30.75 63.00 971

Senior subordinated 0.285 0.234 10.00 23.00 42.25 260

Subordinated 0.347 0.222 19.50 30.29 45.25 347

Junior subordinated 0.144 0.090 9.13 13.00 19.13 12
aSee Schuermann (2005), p. 16

227The aggregated data correspond to Fig. 4.8.
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reported as a quality criterion of the accuracy of the estimated quantiles in compar-

ison with the empirical quantiles:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

3
q̂0:25 � q0:25ð Þ2 þ q̂0:5 � q0:5ð Þ2 þ q̂0:75 � q0:75ð Þ2

h i

r

: (4.97)

Finally, the averaged RMSE is reported for every distribution in order to

determine the most appropriate description of an LGD distribution.

Table 4.9 Results of the normal distribution

Seniority m s q̂0:25 (%) q̂0:5 (%) q̂0:75 (%) RMSE (%)

Senior secured 0.543 0.258 36.84 54.26 71.68 2.97

Senior unsecured 0.387 0.278 19.96 38.71 57.46 6.43

Senior subordinated 0.285 0.234 12.72 28.51 44.30 3.74

Subordinated 0.347 0.222 19.66 34.65 49.64 3.57

Junior subordinated 0.144 0.090 8.33 14.39 20.45 1.20

Ø 3.58

Table 4.10 Results of the lognormal distribution

Seniority mX sX q̂0:25 (%) q̂0:5 (%) q̂0:75 (%) RMSE (%)

Senior secured �0.713 0.452 36.13 49.00 66.45 5.86

Senior unsecured �1.157 0.645 20.35 31.44 48.58 9.00

Senior subordinated �1.513 0.718 13.58 22.03 35.76 4.32

Subordinated �1.232 0.587 19.63 29.16 43.33 1.28

Junior subordinated �2.103 0.574 8.29 12.20 17.97 0.95

Ø 4.28

Table 4.11 Results of the logit-normal distribution

Seniority mX sX q̂0:25 (%) q̂0:5 (%) q̂0:75 (%) RMSE (%)

Senior secured 0.234 1.396 33.02 55.82 76.41 1.57

Senior unsecured �0.686 1.679 13.98 33.51 60.99 1.99

Senior subordinated �1.284 1.493 9.20 21.70 43.13 1.02

Subordinated �0.819 1.224 16.20 30.61 50.17 3.43

Junior subordinated �1.967 0.741 7.83 12.28 18.75 0.89

Ø 1.78

Table 4.12 Results of the beta distribution

Seniority a b q̂0:25 (%) q̂0:5 (%) q̂0:75 (%) RMSE (%)

Senior secured 1.477 1.245 33.59 55.43 75.84 1.26

Senior unsecured 0.801 1.269 14.04 34.58 60.63 2.61

Senior subordinated 0.775 1.944 8.61 22.85 44.01 1.30

Subordinated 1.241 2.341 16.27 31.55 50.37 3.57

Junior Subordinated 2.050 12.193 7.55 12.72 19.50 0.95

Ø 1.94
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As can be seen from the tables, the normal and the lognormal distribution cannot

fit the empirical data very well. By contrast, both the parameterized logit-normal

and the beta distribution lead to a good accuracy with respect to the considered

quantiles. As the logit-normal distribution leads to the smallest averaged RMSE,

this distribution will be used to analyze the accuracy of the ASRF solution and

the granularity adjustments for stochastic LGDs. For this purpose, the moments

and the determined parameter values for senior unsecured bonds and loans will be

implemented.

4.3.4 Numerical Analysis of the ES-Based Granularity
Adjustment

4.3.4.1 Impact on the Portfolio-Quantile

In Sect. 4.2.2, we have studied the accuracy of the ASRF formula and the granular-

ity adjustment for the risk measure VaR. However, we do not know how good the

ES-based measurement of portfolio name concentration risk performs in compari-

son to the VaR-based measurement. Thus, our preceding analyses will be per-

formed for the coherent ES subsequently. Moreover, we test the impact of

stochastic LGDs on the accuracy of our approximation formulas. We start with

an analysis of:

(a) The numerically “exact” coarse grained solution (see (2.76))

(b) The fine grained ASRF solution (see (4.59))

(c) The ASRF solution with first-order adjustment (see (4.70) and (4.73))

(d) The ASRF solution with first- and second-order adjustments (see (4.78)

and (4.81))

for a homogeneous portfolio consisting of 40 credits with PD ¼ 1%, LGD ¼ 100%,

and r ¼ 20%. The resulting ES using the formulas for the “exact” solution (a) as

well as approximations (b) to (d) is presented in Fig. 4.9 for confidence levels

starting at 0.7. In Fig. 4.10, the results for high confidence levels from 0.994 on are

shown.

As can be seen in the figures, the ASRF solution underestimates the risk because

the idiosyncratic component is neglected. Especially for high confidence levels, the

impact of this underestimation is very high. The first-order granularity adjustment

seems to be a very good approximation for a broad range of confidence levels. If the

figures corresponding to the ES are compared to those of the VaR (see Figs. 4.1 and

4.2), the adjustment formula using the ES seems to work even better than the

formula using the VaR. Unfortunately, it seems that the second-order adjustment

cannot improve the result. Even if the approximation for high confidence levels is

very good, the accuracy for lower confidence levels is significantly lower than

without this additional adjustment.
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In order to get a better insight in the accuracy of the different approximations,

subsequently several numerical analyses will be performed similar to

Sects. 4.2.2.2–4.2.2.4. In these sections, we have defined two kinds of critical

numbers. The first measured the minimum number of credits a portfolio must

consist of to have a good approximation of the “true” VaR at confidence level

0.999. The second number measured the critical number of credits for which the

ASRF approximation of the 99.9%-VaR does not exceed the VaR at confidence

level 0.995. Assuming that the increase of the confidence level from 0.995 to

0.999 happened to compensate the neglect of the granularity adjustment, it can be

argued that the idiosyncratic risk component is already accounted for if the

resulting critical number of credits is exceeded, whereas for a lower number of

credits the risk is underestimated (for an actually intended confidence level of

0.995). The first type of analysis directly tests the performance of the different

approaches. On the contrary, the second type of analysis does not focus on the

accuracy of the approximation formulas but analyzes the need of additional

economic capital against the specific regulatory setting. Thus, in order to test

the performance of the different approximation formulas when using a different

risk measure, only the first type of analyses will be performed in the following.228

Due to the changed risk measure, the true risk will be given by the 99.72%-ES

within the Vasicek model instead of the 99.9%-VaR.229

4.3.4.2 Size of Fine Grained Risk Buckets

Similar to Sect. 4.2.2.2, it will be determined for which portfolios the ES-based

ASRF solution is a good approximation of the “true” ES. This will be done with a

target tolerance of b ¼ 5%:230

I
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with b ¼ 0:05: (4.98)

228The critical number of credits in a portfolio which leads to equality of the different parameter

settings of the Basel consultative documents is not of interest in the subsequent analyses regarding

the ES as both rely on the VaR.
229See Sect. 4.3.1.
230As the ASRF solution is constant and the coarse grained solution is monotonously decreasing in

n for the ES (this is a result of the monotonicity of specific risk-property, cf. Sect. 4.3.1), the

inequality also holds for every number above the first number that satisfies the inequality. Thus, the

expression “for all N � n”, which had to be included in the corresponding analysis for the VaR,

can be neglected.

4.3 Measurement of Name Concentration Using the Risk Measure Expected Shortfall 123



Table 4.13 Critical number of credits from that ASRF solution can be stated to be sufficient for

measuring the true ES if LGDs are deterministic (see (4.98))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 30,405 20,112 4,711 4,516 3,593 2,803 1,828 1,246 893 443 346 191

3.5% 25,215 16,766 3,996 3,815 3,048 2,399 1,571 1,077 775 389 306 171

4.0% 21,425 14,273 3,460 3,297 2,644 2,079 1,375 946 686 348 275 155

4.5% 18,300 12,267 3,022 2,883 2,319 1,829 1,213 844 612 315 249 142

5.0% 15,920 10,714 2,663 2,561 2,054 1,628 1,090 758 553 286 228 132

5.5% 14,044 9,432 2,377 2,290 1,838 1,459 979 685 502 263 210 122

6.0% 12,434 8,443 2,140 2,058 1,658 1,319 889 625 461 243 195 113

6.5% 11,167 7,513 1,944 1,858 1,512 1,208 812 574 425 226 181 106

7.0% 9,985 6,786 1,765 1,701 1,374 1,100 750 529 393 211 170 101

7.5% 9,020 6,163 1,618 1,550 1,265 1,016 689 492 364 198 159 95

8.0% 8,201 5,617 1,490 1,426 1,169 933 641 456 342 186 150 90

8.5% 7,508 5,135 1,378 1,318 1,083 865 598 426 318 175 142 85

9.0% 6,922 4,709 1,277 1,222 1,007 805 555 400 299 166 135 81

9.5% 6,342 4,336 1,186 1,136 937 751 519 376 283 156 128 77

10.0% 5,833 4,054 1,104 1,059 874 702 487 354 267 149 122 74

10.5% 5,455 3,738 1,031 999 816 660 462 334 253 142 116 72

11.0% 5,035 3,462 974 933 764 623 434 315 240 136 111 68

11.5% 4,669 3,259 911 873 719 585 409 298 227 129 106 66

12.0% 4,386 3,021 854 824 681 551 386 283 216 123 102 64

12.5% 4,075 2,860 812 778 640 525 367 268 205 119 98 60

13.0% 3,845 2,657 762 732 611 495 349 257 196 114 94 58

13.5% 3,587 2,524 725 697 575 469 331 244 188 109 90 56

14.0% 3,389 2,351 684 657 545 447 318 233 179 105 87 54

14.5% 3,201 2,237 652 628 519 424 301 224 171 100 83 53

15.0% 3,002 2,095 617 593 493 405 290 213 166 97 80 51

15.5% 2,861 1,991 591 567 470 385 275 205 158 94 78 49

16.0% 2,684 1,905 558 538 452 369 265 196 152 90 75 47

16.5% 2,548 1,782 536 514 428 353 252 189 146 87 72 47

17.0% 2,438 1,703 508 495 411 337 244 181 141 85 71 45

17.5% 2,292 1,634 487 468 391 325 232 175 136 81 68 44

18.0% 2,181 1,532 469 450 375 309 224 167 131 79 66 42

18.5% 2,092 1,467 445 432 362 298 214 162 126 76 64 42

19.0% 1,998 1,411 428 411 344 288 207 155 123 74 62 40

19.5% 1,884 1,330 413 397 332 274 200 150 118 72 60 39

20.0% 1,806 1,273 393 384 321 265 191 146 115 69 59 37

20.5% 1,739 1,225 378 364 306 257 185 140 110 68 57 37

21.0% 1,653 1,182 366 351 295 244 180 136 107 65 56 37

21.5% 1,572 1,114 350 340 286 236 172 132 104 64 54 34

22.0% 1,512 1,070 336 324 273 229 167 126 100 62 53 34

22.5% 1,459 1,032 325 313 263 219 162 123 98 60 51 34

23.0% 1,411 999 315 303 255 212 155 120 94 59 50 32

23.5% 1,329 946 301 294 248 206 151 115 91 57 48 31

24.0% 1,277 908 290 280 237 200 146 112 89 56 47 31

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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Table 4.14 Critical number of credits from that ASRF solution can be stated to be sufficient for

measuring the true ES if LGDs are stochastic (see (4.99))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 44,234 22,604 5,767 5,416 4,464 3,201 2,291 1,517 1,097 585 455 270

3.5% 28,168 20,206 4,362 4,764 3,597 2,615 1,785 1,312 1,022 476 397 245

4.0% 23,449 16,611 4,007 3,838 2,743 2,378 1,665 1,196 806 478 358 220

4.5% 21,337 16,066 3,438 3,592 2,877 2,393 1,423 1,039 855 403 316 207

5.0% 22,141 15,503 3,048 2,993 2,361 1,907 1,313 970 655 375 277 202

5.5% 20,044 11,914 2,600 3,112 2,197 1,497 1,157 794 623 351 265 172

6.0% 14,358 12,750 2,264 2,226 1,820 1,550 1,119 890 598 304 247 172

6.5% 17,261 10,528 2,174 2,283 1,852 1,461 909 637 550 325 248 159

7.0% 11,413 8,966 2,068 1,968 1,649 1,235 864 623 506 261 234 152

7.5% 10,555 10,372 1,718 1,728 1,481 1,379 851 627 506 237 210 149

8.0% 11,789 6,450 1,665 1,554 1,380 1,395 701 624 449 243 206 137

8.5% 11,395 6,049 1,605 1,672 1,307 1,086 651 463 391 227 206 129

9.0% 10,290 5,363 1,689 1,463 1,264 1,201 682 459 372 217 202 130

9.5% 6,833 6,043 1,588 1,432 1,028 853 737 474 373 203 171 121

10.0% 5,945 4,474 1,148 1,404 1,013 1,051 590 443 386 191 157 117

10.5% 8,491 3,458 1,197 1,283 1,012 818 594 462 346 180 157 113

11.0% 8,144 3,707 1,218 999 973 623 593 424 322 178 128 116

11.5% 4,860 3,684 1,066 1,103 752 864 405 376 282 180 145 106

12.0% 5,745 4,733 1,016 1,026 795 918 497 379 252 150 160 108

12.5% 5,918 3,352 1,032 903 756 677 502 315 253 156 133 107

13.0% 3,832 3,041 831 860 734 586 394 342 262 145 116 98

13.5% 4,284 2,810 1,005 884 805 558 397 310 292 149 127 95

14.0% 3,910 2,088 690 884 743 450 327 265 232 134 119 93

14.5% 4,854 3,034 876 683 741 495 428 245 215 132 119 91

15.0% 3,233 2,371 661 684 737 454 446 243 209 130 115 91

15.5% 3,357 3,308 858 551 583 529 323 314 163 126 97 90

16.0% 2,923 2,531 1,039 824 695 449 302 238 186 119 103 86

16.5% 4,623 1,675 630 609 643 416 433 214 182 117 106 84

17.0% 2,413 2,016 759 573 527 493 333 231 214 115 100 84

17.5% 2,406 2,145 517 468 430 384 280 235 190 122 92 82

18.0% 2,465 1,660 588 483 496 356 286 223 167 103 91 86

18.5% 3,963 2,814 600 476 543 436 222 197 144 99 89 80

19.0% 2,040 2,018 462 458 479 348 221 206 156 105 94 79

19.5% 2,533 1,331 421 500 488 320 246 216 154 97 88 76

20.0% 2,763 1,587 419 528 341 323 239 173 142 94 85 78

20.5% 2,408 1,490 535 505 476 354 230 205 163 98 80 77

21.0% 2,819 1,144 354 406 383 271 221 173 158 81 81 78

21.5% 2,106 1,105 380 503 372 227 202 172 125 114 87 75

22.0% 2,748 1,317 401 332 294 281 225 181 140 72 77 74

22.5% 2,709 1,185 450 311 370 249 169 149 127 81 76 71

23.0% 1,579 1,055 452 350 284 263 179 173 103 81 77 71

23.5% 1,785 2,476 384 430 269 258 181 132 148 80 72 71

24.0% 2,399 957 410 330 244 210 167 156 121 85 70 70

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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Moreover, we measure the accuracy of the ASRF solution if LGDs are stochastic

and following a logit-normal distribution with

I
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c;ES;stoch: ¼ inf n :
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(4.99)

In contrast to the analyses of Sect. 4.2.2 and the preceding definition of a critical

number for deterministic LGDs (4.98), the denominator, which is the benchmark

for the ASRF solution, cannot be determined with the Vasicek model because it

does not account for stochastic LGDs. Against this background, we perform Monte

Carlo simulations with one million trials for each PD/r-combination and for every

number of credits until the target accuracy is reached.

The resulting critical numbers for the case of deterministic LGDs I
ðASRFÞ
c;ES;det: are

reported in Table 4.13 for a broad range of correlations and PDs. Similar to the

corresponding VaR-analysis, the values I
ðASRFÞ
c;ES;det: vary from 31 for a high PD/

r-combination to 30,405 for a low PD/r-combination. This shows that at least for

non-retail portfolios the assumption of infinite granularity is critical for real-world

portfolios and the chosen risk measure does not influence the accuracy of the ASRF

solution to a great extent.

The corresponding critical numbers for stochastic LGDs I
ðASRFÞ
c;ES;stoch: are reported in

Table 4.14. As expected, the accuracy of the ASRF solution is lower for stochastic

than for deterministic LGDs because there is an additional source of unsystematic

uncertainty. In comparison with the case of deterministic LGDs, the minimum

number of credits increased from a range between 31 and 31,405 to a range between

70 and 44,234 credits. On average, the required portfolio size is 31.55% higher due

to stochastic LGDs if the identical accuracy shall be achieved.

4.3.4.3 Probing First-Order Granularity Adjustment

In order to test the accuracy of the ES-based first-order granularity adjustment, we

determine the critical number I
ð1st Order Adj:Þ
c;ES;det: , which is the minimum number of

credits to deliver a good approximation of the “true” ES on a 99.72% confidence

level, for different PD/r-combinations. These critical values
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;with b ¼ 0:05;

(4.100)

are presented in Table 4.15. As the ES-based first-order granularity adjustment does

not only take the conditional variance of the default indicator into account but also
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the second moment of LGDs, it is interesting to find out how good the granularity

adjustment performs in the presence of stochastic LGDs. For this purpose, we also

determine the critical values

I
ð1:Order Adj:Þ
c;ES;stoch: ¼ inf n :
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with b ¼ 0:05, which are shown in Table 4.16.

For deterministic LGDs, the minimum number of credits varies between 7 and

2,468, which is a reduction of averaged 91.64% compared to the ASRF solution

(see Table 4.13 in Sect. 4.3.4.2). Thus, we have a significant improvement of the

accuracy if the first-order adjustment is taken into account. A very interesting

finding results if the accuracy of the granularity adjustment is compared for the

VaR and the ES. Even for a portfolio that consists of averaged 49.05% less credits

and thus contains significantly more idiosyncratic risk, we are able to achieve the

identical accuracy if name concentrations are measured on the basis of the Expected

Shortfall instead of the Value at Risk. For the most relevant cases, where the

minimum portfolio size is relatively high, this effect is even stronger.

If the improvement is analyzed only for cases where the minimum portfolio

size is higher than 100 credits (determined for the VaR-based granularity adjust-

ment), we find that the target accuracy can still be achieved if the portfolio

consists of 68.91% less portfolios compared to a VaR-based measurement. For

example, a high quality retail portfolio (AAA) must consist of at least 1,588

credits instead of 5,027 credits if name concentration is measured with the ES.

Similarly, a medium quality corporate portfolio (BBB) must contain 25 compared

to 106 credits. This shows that the already good performance of the VaR-based

granularity adjustment can be improved significantly if name concentrations are

measured with the ES.

The results for stochastic LGDs, which are presented in Table 4.16, are very

promising. In most cases, the accuracy is slightly higher than in the case of

deterministic LGDs. On average, the required portfolio size is reduced by

3.64%. Concretely, the accuracy is higher/identical/lower for 272/35/209 ele-

ments of the matrix. Of course, the results are influenced by a small degree of

simulation noise but the accuracy seems to be at least identically in the presence

of stochastic LGDs. If the accuracy of the granularity adjustment is compared

with the ASRF solution of Table 4.14, the minimum number of credits is about

92.19% lower,231 which is an excellent result. As a further robustness check, the

corresponding values are determined for beta-distributed LGDs. In this case, the

231The corresponding value for deterministic LGDs is 91.64%.
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Table 4.15 Critical number of credits from that the first order adjustment can be stated to be

sufficient for measuring the true ES if LGDs are deterministic (see (4.100))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 2,468 1,870 439 466 367 279 192 148 111 62 53 38

3.5% 2,198 1,410 396 377 294 223 157 125 94 55 45 34

4.0% 1,588 1,010 313 298 266 205 145 106 81 48 40 29

4.5% 1,453 930 287 274 214 186 119 89 69 42 36 27

5.0% 976 858 224 213 198 152 111 83 64 37 34 25

5.5% 911 792 209 199 155 142 90 69 55 33 30 24

6.0% 853 726 195 186 146 112 85 65 52 31 27 22

6.5% 800 514 147 173 138 106 80 61 44 30 26 20

7.0% 752 485 139 133 129 100 64 51 42 27 23 20

7.5% 707 458 132 126 99 95 61 49 40 26 23 18

8.0% 665 433 126 120 94 89 58 47 33 25 22 18

8.5% 625 410 120 114 90 70 56 44 32 22 19 17

9.0% 585 250 113 108 86 67 53 36 31 21 19 16

9.5% 540 240 107 103 82 64 51 35 30 20 18 16

10.0% 358 231 101 74 79 62 40 34 29 20 16 13

10.5% 343 222 75 72 75 59 38 33 28 17 16 13

11.0% 330 213 72 69 71 57 37 25 23 17 16 13

11.5% 317 206 70 67 53 54 36 24 22 16 13 13

12.0% 305 198 67 64 51 52 35 24 22 16 13 13

12.5% 294 191 65 62 49 50 34 23 21 16 13 13

13.0% 283 185 63 60 48 37 33 23 20 13 13 11

13.5% 273 178 61 58 46 36 32 22 20 13 13 11

14.0% 264 172 59 56 45 35 31 21 19 13 12 11

14.5% 120 167 57 54 44 34 30 21 19 13 12 11

15.0% 117 161 55 53 42 33 29 20 18 12 12 11

15.5% 114 156 53 51 41 32 28 20 18 12 12 11

16.0% 111 151 51 33 40 31 26 19 14 12 12 11

16.5% 109 147 33 32 39 31 20 19 14 12 10 11

17.0% 106 142 33 31 37 30 20 18 14 12 10 11

17.5% 104 138 32 30 36 29 19 18 14 11 10 11

18.0% 101 134 31 30 35 28 19 18 13 11 10 11

18.5% 99 130 30 29 34 27 19 13 13 9 10 8

19.0% 97 63 30 28 23 27 18 13 13 9 9 9

19.5% 95 61 29 28 22 17 18 13 9 9 9 9

20.0% 93 60 28 27 22 17 17 12 9 9 9 9

20.5% 91 59 28 27 21 17 17 12 9 9 9 9

21.0% 89 58 27 26 21 16 17 12 9 9 9 9

21.5% 88 57 27 25 20 16 16 12 9 9 9 9

22.0% 86 56 26 25 20 16 16 11 9 9 7 9

22.5% 84 55 26 24 20 16 16 11 11 9 7 9

23.0% 83 54 25 24 19 15 15 11 11 8 7 9

23.5% 81 53 25 23 19 15 15 11 11 8 7 9

24.0% 80 52 24 23 19 15 15 11 11 8 7 9

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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Table 4.16 Critical number of credits from that the first order adjustment can be stated to be

sufficient for measuring the true ES if LGDs are stochastic (see (4.101))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 2,338 1,682 531 470 403 308 243 158 126 74 66 50

3.5% 1,745 1,371 367 360 308 226 190 130 103 63 54 42

4.0% 1,663 1,104 315 308 241 214 151 117 89 54 49 39

4.5% 1,272 906 259 248 204 171 132 92 74 49 43 36

5.0% 1,055 779 225 224 175 164 112 89 64 41 37 33

5.5% 841 575 179 207 151 123 91 68 55 38 36 31

6.0% 758 506 165 158 140 107 85 70 53 35 33 29

6.5% 620 436 145 142 124 106 81 64 50 33 30 26

7.0% 595 416 126 122 129 94 63 63 46 30 27 26

7.5% 515 346 111 119 96 79 64 48 41 27 25 24

8.0% 473 335 101 107 89 72 61 42 36 25 25 23

8.5% 415 327 89 89 77 71 52 37 32 23 23 23

9.0% 272 290 79 86 75 66 48 38 32 23 22 21

9.5% 269 163 72 75 62 57 47 38 30 22 20 21

10.0% 233 170 74 69 64 56 36 32 27 20 19 19

10.5% 221 146 67 61 60 52 38 28 27 21 19 19

11.0% 189 146 64 60 58 50 34 35 25 20 18 19

11.5% 191 127 56 58 46 49 35 26 24 17 17 18

12.0% 174 119 56 54 45 35 35 23 23 18 16 17

12.5% 180 113 54 51 41 34 29 23 22 16 16 17

13.0% 169 111 51 48 37 31 30 22 22 15 14 16

13.5% 163 106 54 41 41 33 25 21 20 15 14 17

14.0% 142 102 42 41 35 33 23 22 19 15 14 15

14.5% 151 98 42 46 33 30 20 18 17 13 14 16

15.0% 139 92 42 44 30 28 25 18 16 12 13 16

15.5% 137 89 31 37 32 27 18 16 15 13 13 16

16.0% 133 89 45 36 31 27 19 16 15 12 13 15

16.5% 125 87 26 29 30 24 18 16 14 13 12 14

17.0% 131 79 36 24 20 23 17 16 13 11 12 14

17.5% 119 81 21 31 26 24 18 13 14 11 12 15

18.0% 105 81 21 23 25 22 15 12 13 11 11 15

18.5% 122 80 20 22 19 21 15 12 13 10 11 15

19.0% 109 77 21 19 16 17 15 11 12 11 10 14

19.5% 115 80 20 19 17 17 15 12 11 10 10 15

20.0% 112 69 18 18 15 17 15 11 11 10 10 14

20.5% 105 71 18 17 25 19 15 10 10 9 10 14

21.0% 102 69 17 15 14 16 14 10 10 10 9 14

21.5% 101 62 17 16 14 14 12 13 9 9 9 14

22.0% 92 62 17 15 13 14 14 10 8 8 9 13

22.5% 88 63 16 14 13 10 12 10 10 9 10 14

23.0% 86 67 15 14 12 14 11 10 9 9 9 14

23.5% 83 59 15 15 13 11 10 9 9 8 8 14

24.0% 97 58 14 15 12 10 12 9 9 8 8 14

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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target accuracy is already reached for 4.89% less credits, compared to the case of

deterministic LGDs. In comparison to the ASRF solution, the critical number is

92.27% lower.

4.3.4.4 Probing Second-Order Granularity Adjustment

As a next step, we analyze the accuracy of the ES-based second-order adjustment in

comparison to the “exact” ES for deterministic LGDs:
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with b ¼ 0:05. Moreover, the second order granularity adjustment is tested for

stochastic LGDs using the formula
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with b ¼ 0:05. Due to the second-order adjustment, not only the variance but also

the skewness of LGDs is accounted for in the approximation formula.

The results for deterministic LGDs, which are reported in Table 4.17, confirm

the findings of Fig. 4.9 and also of the corresponding VaR-based analysis of

Sect. 4.2.2.4. If concentration risk is measured with the second-order adjustment,

the required portfolio size is 89.79% smaller than without the adjustment formula

and it performs still better than the VaR-based adjustment formulas but there is no

improvement compared to the ES-based first-order adjustment. Thus, it has to be

stated that the second-order adjustment formula stemming from additional elements

of the Taylor series expansion is performing worse than the first-order adjustment.

As discussed in Sect. 4.2.2.4, it remains unclear if this unexpected result is e.g. a

consequence of a non-converging Taylor series or if the consideration of more

elements of the Taylor series could improve the approximation. But for all that, we

found that the ES-based first-order adjustment is an excellent method for measuring

name concentrations.

The corresponding results for stochastic LGDs are reported in Table 4.18.

Interestingly, the results for low PDs and high correlation parameters are very

good, whereas for high PDs and low correlation parameters the results are worse
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Table 4.17 Critical number of credits from that the first plus second order adjustment can be

stated to be sufficient for measuring the true ES if LGDs are deterministic (see (4.102))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 3,381 2,533 880 841 707 585 433 338 271 178 159 131

3.5% 2,036 1,627 663 634 542 454 347 270 222 151 135 114

4.0% 1,302 1,127 491 473 413 355 279 223 183 130 118 103

4.5% 760 741 389 374 333 289 226 185 156 115 105 94

5.0% 594 443 306 295 269 237 189 159 136 102 94 86

5.5% 256 238 237 229 215 194 160 138 120 91 85 80

6.0% 466 161 180 176 169 157 135 120 107 84 78 74

6.5% 473 273 159 153 152 129 123 105 95 75 72 70

7.0% 746 453 113 110 116 113 103 91 84 69 67 66

7.5% 722 447 101 98 87 89 86 80 75 64 63 63

8.0% 695 435 66 65 76 80 80 73 67 60 59 59

8.5% 668 421 58 56 69 61 65 64 63 56 55 57

9.0% 641 407 33 50 46 54 61 59 56 52 52 55

9.5% 614 392 27 27 41 50 50 56 53 50 50 53

10.0% 588 378 23 23 37 35 45 48 50 47 47 51

10.5% 563 363 39 36 34 31 42 45 44 45 45 49

11.0% 539 350 40 38 18 28 40 43 42 42 43 48

11.5% 515 336 41 38 16 26 31 36 38 41 42 47

12.0% 492 323 64 60 14 15 29 34 36 38 39 45

12.5% 469 310 63 59 27 13 27 33 34 37 38 44

13.0% 445 298 62 59 27 12 26 28 33 36 37 43

13.5% 420 286 61 58 27 11 18 26 29 34 35 42

14.0% 292 274 60 56 42 19 17 25 28 33 35 42

14.5% 282 262 58 55 42 19 16 24 27 32 34 40

15.0% 272 178 57 54 41 19 15 23 26 31 32 40

15.5% 263 173 56 53 41 19 14 22 25 30 31 39

16.0% 254 168 54 52 40 29 9 18 25 29 31 38

16.5% 245 162 53 33 39 29 8 17 21 28 30 38

17.0% 237 158 52 33 38 28 8 16 21 27 30 37

17.5% 229 153 51 48 38 28 7 16 20 27 28 37

18.0% 221 148 33 47 37 28 7 15 19 26 28 37

18.5% 213 144 48 46 36 27 7 15 19 26 27 36

19.0% 206 139 47 45 36 27 6 14 18 25 27 35

19.5% 198 135 46 44 35 26 6 14 18 25 26 35

20.0% 191 131 45 43 34 17 6 14 18 23 26 35

20.5% 183 127 44 42 33 17 3 10 17 23 26 34

21.0% 176 123 43 41 33 17 3 10 15 23 25 34

21.5% 91 62 42 40 32 17 3 9 15 22 25 34

22.0% 88 60 41 39 31 16 4 9 14 22 25 34

22.5% 86 58 40 39 31 16 4 9 14 22 25 34

23.0% 83 57 39 38 30 23 4 9 14 21 23 33

23.5% 81 56 38 37 30 23 4 8 13 21 23 33

24.0% 78 54 37 36 29 23 4 8 13 21 23 33

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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Table 4.18 Critical number of credits from that the first plus second order adjustment can be

stated to be sufficient for measuring the true ES if LGDs are stochastic (see (4.103))

AAA

up to

AA�

A�
up to

A+

BBB+ BBB BBB� BB+ BB BB� B+ B B� CCC

up to C

0.03% 0.05% 0.32% 0.34% 0.46% 0.64% 1.15% 1.97% 3.19% 8.99% 13.01% 30.85%

3.0% 4,175 3,045 1,045 980 818 699 499 393 327 227 201 181

3.5% 2,745 2,102 835 761 674 546 435 323 272 190 167 154

4.0% 1,699 1,410 618 579 548 424 331 275 218 165 148 144

4.5% 1,090 951 477 462 419 361 282 230 194 140 135 131

5.0% 541 632 398 396 347 272 252 184 163 128 119 120

5.5% 264 347 311 287 277 256 197 170 144 113 110 110

6.0% 288 210 254 258 210 198 162 136 130 105 96 104

6.5% 600 136 203 193 178 164 142 124 113 96 89 98

7.0% 652 388 158 159 137 139 131 105 101 84 82 92

7.5% 670 358 126 115 126 116 112 102 89 81 81 87

8.0% 670 376 95 93 103 108 91 86 90 75 72 85

8.5% 613 408 73 75 81 84 89 85 81 70 69 80

9.0% 555 368 47 46 64 70 77 73 72 67 65 80

9.5% 575 316 37 36 55 59 63 65 63 62 62 76

10.0% 531 364 24 29 38 48 62 63 61 60 61 75

10.5% 550 321 11 12 31 41 55 60 53 54 57 71

11.0% 495 323 35 18 23 30 46 45 51 53 55 70

11.5% 431 276 47 46 11 24 40 46 45 52 53 69

12.0% 366 278 54 49 8 22 34 44 44 49 51 69

12.5% 428 295 55 51 15 18 32 41 41 46 49 65

13.0% 424 271 55 50 18 16 27 37 36 45 47 65

13.5% 367 264 63 46 37 7 26 37 38 42 47 63

14.0% 225 233 52 49 34 6 24 31 34 41 46 65

14.5% 333 227 53 61 35 10 22 29 31 44 42 62

15.0% 215 220 54 53 35 24 16 27 31 40 42 63

15.5% 204 193 56 49 36 21 17 26 30 37 41 60

16.0% 191 189 54 46 36 25 13 24 28 37 40 60

16.5% 185 153 49 47 37 23 12 22 27 35 40 61

17.0% 169 128 50 46 34 23 11 21 25 34 37 60

17.5% 153 140 45 45 35 25 10 20 24 35 37 59

18.0% 138 145 44 44 33 24 9 19 25 33 35 59

18.5% 152 120 42 45 35 24 8 19 23 33 35 57

19.0% 130 113 52 42 31 22 4 17 22 33 36 58

19.5% 132 108 43 39 32 24 4 15 22 30 35 58

20.0% 133 90 40 46 31 23 3 16 21 30 34 58

20.5% 120 86 35 37 35 24 5 15 20 29 33 59

21.0% 113 85 38 40 29 22 5 13 21 29 33 59

21.5% 110 76 43 36 27 22 5 12 19 29 33 58

22.0% 102 73 36 36 28 23 6 12 19 28 34 59

22.5% 93 74 36 31 27 20 5 12 17 28 33 58

23.0% 86 77 34 33 26 22 6 11 18 27 32 59

23.5% 13 67 32 30 28 22 6 11 18 28 32 58

24.0% 24 67 31 34 24 22 6 11 16 28 31 59

Corporates, sovereigns, and banks SMEs (5Mio. < Sales < 50 Mio.)

SMEs (Sales < 5 Mio.) Mortgage Revolving retail Other retail
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than for the case of deterministic LGDs. Even if the required portfolio size is still

significantly smaller than with the ASRF solution (–81.50%), the accuracy is worse

than for deterministic LGDs (+16.25%). This confirms the findings from before that

the first-order adjustment is strictly preferable. The corresponding values for beta-

distributed LGDs are almost identical (–81.50% and +16.38%).

4.3.4.5 Probing Granularity for Inhomogeneous Portfolios

Subsequently, the accuracy of the ES-based granularity adjustment will be tested

for inhomogeneous portfolios, which consist of credits with different exposure

weights and default probabilities. The high quality and low quality test portfolios

are identical to those of Sect. 4.2.2.5. The analyzed portfolios consist of 40, 60, . . .,
400, 800, 1,600, and 4,000 loans and the Expected Shortfall is computed at a

confidence level of 99.72% for a correlation parameter of r ¼ 20%. The resulting

first- and second-order granularity add-on and the corresponding ES of a Monte

Carlo simulation with three million trials are presented in Fig. 4.11.

The size and shape of the true and the approximated granularity add-ons are

similar to those calculated for the VaR. Thus, we find that for the portfolio
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Fig. 4.11 ES-based granularity add-on for heterogeneous portfolios calculated analytically with

first-order (solid lines) and second-order (dotted lines) adjustments as well as with Monte Carlo

simulations (þ and o) using three million trials
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consisting of 40 loans we have a granularity add-on of about 6%. In contrast to the

VaR-based analysis, the add-on of the low-quality portfolio does not exceed the

add-on of the high-quality portfolio. But most importantly, the granularity add-on is

almost linear in terms of 1/n* and the first-order adjustment is capable to capture the

deviations from the ASRF solution with high accuracy, whereas the second-order

adjustment leads to an underestimation of idiosyncratic risks.

4.4 Interim Result

Presently discussed analytical solutions for risk quantification of credit portfolio

models especially rely on the assumptions of an infinite number of credits and of

only one systematic factor. Thus, those analytical frameworks do not account for

single name and sector concentration risk. This problem is discussed intensively by

the financial authorities and it is especially considered in Pillar 2 of Basel II. To

cope with the problem of name concentration, an add-on factor has been developed

that adjusts the analytical solution for portfolios of finite size and therefore might

serve as a simple solution for quantifying name concentration risk under Pillar 2. In

this chapter, the general framework of this (first-order) granularity adjustment for

medium sized risk buckets has been reviewed. Furthermore, we have derived an

additional (second-order) adjustment for small risk buckets, which reduces the error

term from O(1/n2) to O(1/n3). Even if it has already been mentioned by Gordy

(2004) that it may be worthwhile to calculate these additional terms, the adjustment

formula has not been determined before. After the derivation of the second-order-

adjustment in general form, we have specified the formula for the Vasicek model.

As a next step, we have carried out a detailed numerical study. In this study, we

have reviewed the accuracy of the infinite granularity assumption for credit portfo-

lios with a finite number of credits, as well as the improvement of accuracy with

so-called first and second order granularity adjustments. Due to this study, banks

are able to easily assess whether the assumption of infinite granularity is critical

for their portfolio. Furthermore, the outcomes of the study show in which situa-

tions the granularity adjustment formulas are able to accurately measure portfolio

name concentrations. These results are presented in terms of critical values for

the minimum number of credits in a portfolio. We come to the conclusion that the

critical number of credits for approving the assumption of infinite granularity is

influenced by the probability of default, the asset correlation and of course the

required accuracy of the analytical formula to great extent. We specify the mini-

mum accuracy to 5%, i.e. if the credit portfolio is larger than our calculated critical

values, the “true” risk and the approximation differ by less than 5%. This critical

number of credits varies enormously, e.g. from 1,371 to 23,989 for a high-quality

portfolio (A-rated) and from 23 to 205 for an extremely low-quality portfolio

(CCC-rated) under the risk measure VaR. With the use of the first order granularity

adjustment we can reduce these ranges drastically. The critical number of credits is

in the bandwidth 456 to 4,227 (A-rated) and 9 to 42 (CCC-rated) and thus, the
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postulated accuracy should be obtained in many real-world portfolios. Additionally,

the second order adjustment does not seem to work for the VaR since it reduces the

add-on factor and the accuracy.

We have demonstrated that the VaR, which is coherent in the context of the

ASRF framework, has some theoretical shortcomings if we leave the ASRF frame-

work, which is necessary to account for name concentrations. For this reason, we

have proposed a methodology how a more convenient risk measure can be used for

the measurement of name concentrations. For this purpose, we have adjusted the

confidence level of the ES in a way that the Pillar 1 formulas still lead to an almost

identical capital requirement, leading to an ES-confidence level of a ¼ 99.72%.

Using this confidence level, we are able to measure name concentrations without

being exposed to the theoretical shortcomings of the VaR, but the results are still

consistent with the Pillar 1 formulas. Based on these preliminary considerations, we

have theoretically derived the ES-based first- and second-order granularity adjust-

ment in a general one-factor framework and for the Vasicek model. Similar to the

corresponding formulas for the VaR, the second-order granularity adjustment,

which is intended to improve the accuracy for small portfolios, has not been derived

before in the literature. The subsequent numerical analyses confirm that the first-

order granularity adjustment leads to a very good approximation of the unsystem-

atic risk component whereas the second-order adjustment cannot improve the

accuracy. Interestingly, the required portfolio size is not only 91.64% lower com-

pared to the ASRF solution but also 49.05% lower compared to the VaR-based

granularity adjustment. This shows that it is indeed advisable to measure name

concentration risk on the basis of the coherent ES instead of relying on the non-

coherent VaR.

These findings have been emphasized by a robustness check using stochastic

LGDs. For this additional analysis, we have firstly calibrated several probabi-

lity distributions with empirical data of recovery rates for different seniorities

using a moment matching approach. Namely, we have used the normal distribu-

tion, the lognormal distribution, the logit-normal distribution, and the beta

distribution. As the logit-normal distribution has performed best with respect

to the empirical observed quantiles, we generated recovery rates which are logit-

normal distributed with parameters stemming from the empirical data of senior

unsecured loans. Using these data, we have repeated the test of the ASRF

solution and the ES-based granularity adjustments. As expected, we find that

the accuracy of the ASRF solution is lower due to the additional source of

uncertainty. If the LGDs are stochastic, the minimum number of credits has to

be 31.55% higher than for deterministic LGDs. Interestingly, the ES-based first-

order adjustment performs slightly better in comparison with deterministic LGDs

(4.89% less credits). Compared to the ASRF solution, the required portfolio size

is 92.27% lower when using the first-order adjustment, which confirms our

findings. Thus, apparently the accuracy of the measured risk is generally very

high even for relatively small portfolios if the first-order granularity adjustment

is incorporated.
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4.5 Appendix

4.5.1 Alternative Derivation of the First-Order Granularity
Adjustment

With reference to Wilde (2001), the granularity adjustment will be derived as an

approximation of the difference Dq between the true VaR of a granular portfolio

qðnÞ and the approximation qð1Þ that results if infinite granularity is assumed to

hold:

Dq ¼ qðnÞa � qð1Þ
a : (4.104)

Instead of determining the add-on Dq directly, it will be analyzed how much the

confidence level a will be overestimated or the probability p :¼ 1� a of exceeding
the VaR will be underestimated if the portfolio is assumed to be infinitely granular.

Thus, the probability

Dp ¼ pð1Þ � p ¼ a� að1Þ (4.105)

refers to the overestimation of the confidence level if only the systematic loss is

considered. Here, a is the specified “target” confidence level, and by definition also
the probability that the systematic loss will not exceed q

ð1Þ
a :

1� p ¼ a :¼ P ~L � qðnÞa

� �

¼ P E ~L j ~x� � � qð1Þ
a

� �

: (4.106)

By contrast, að1Þ is the actual confidence level if the VaR is approximated by the

ASRF model:

1� pð1Þ ¼ að1Þ :¼ P ~L � qð1Þ
a

� �

: (4.107)

Subsequent to the derivation of Dp, the result will be transformed into a shift of

the loss quantile Dq.
Analogous to Appendix 2.8.3, the unconditional probability pð1Þ can be

expressed in terms of the conditional probability. Then, the substitution

y :¼ q
ð1Þ
a þ t is performed to center the integration at q

ð1Þ
a :

pþ Dp ¼ P ~L � qð1Þ
a

� �

¼
ð

1

y¼�1
P ~L � qð1Þ

a j ~Y ¼ y
� �

fYðyÞdy

¼
ð

1

t¼�1
P ~L � qð1Þ

a j ~Y ¼ qð1Þ
a þ t

� �

fY qð1Þ
a þ t

� �

dt; (4.108)
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with the shorter notation ~Y :¼ E ~L j ~x� �

for the conditional expectation. According

to (4.106), the probability p can be written as

p ¼ P ~Y � qð1Þ
a

� �

¼
ð

1

y¼q
ð1Þ
a

fYðyÞ dy ¼
ð

1

t¼0

fY qð1Þ
a þ t

� �

dt (4.109)

using the substitution y :¼ q
ð1Þ
a þ t again, so that tðy ¼ q

ð1Þ
a Þ ¼ 0 and tðy ¼ 1Þ ¼

1. Hence, (4.108) can be expressed as

Dp ¼
ð

1

t¼�1
P ~L � qð1Þ

a j ~Y ¼ qð1Þ
a þ t

� �

fY qð1Þ
a þ t

� �

dt�
ð

1

t¼0

fY qð1Þ
a þ t

� �

dt

¼
ð

0

t¼�1
P ~L � qð1Þ

a j ~Y ¼ qð1Þ
a þ t

� �

fY qð1Þ
a þ t

� �

dt

þ
ð

1

t¼0

P ~L � qð1Þ
a j ~Y ¼ qð1Þ

a þ t
� �

� 1
h i

fY qð1Þ
a þ t

� �

dt:

(4.110)

The following transformations are performed for simplification of the integrand

in order to solve the integral. A realization of the systematic loss implies a realiza-

tion of the systematic factor. As the credit loss events are assumed to be indepen-

dent for a realization of the systematic factor, the conditional credit losses follow a

binomial distribution, which can be approximated by a normal distribution for a

sufficient number of credits. This leads to

P ~L � qð1Þ
a j ~Y ¼ qð1Þ

a þ t
� �

¼ 1� P ~L< qð1Þ
a j ~Y ¼ qð1Þ

a þ t
� �

� 1� F
q
ð1Þ
a � E ~L j ~Y ¼ q

ð1Þ
a þ t

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V ~L j ~Y ¼ q
ð1Þ
a þ t

� �

r

0

B

B

@

1

C

C

A

: (4.111)

As Eð~LÞ ¼ EðEð~L j ~xÞÞ ¼ Eð ~YÞ, which is due to the law of iterated expectation,

the conditional expectation of (4.111) equals

E ~L j ~Y ¼ qð1Þ
a þ t

� �

¼ E ~Y j ~Y ¼ qð1Þ
a þ t

� �

¼ qð1Þ
a þ t: (4.112)

With the symmetry 1� Fð�xÞ ¼ FðxÞ and defining s2ðyÞ :¼ Vð~L j ~Y ¼ yÞ,
(4.111) results in
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P ~L � qð1Þ
a j ~Y ¼ qð1Þ

a þ t
� �

� 1� F
q
ð1Þ
a � q

ð1Þ
a � t

s q
ð1Þ
a þ t

� �

0

@

1

A

¼ F
t

s q
ð1Þ
a þ t

� �

0

@

1

A; (4.113)

so that (4.110) can be written as

Dp ¼
ð

0

t¼�1
F

t

s q
ð1Þ
a þ t

� �

0

@

1

A fY qð1Þ
a þ t

� �

dt

þ
ð

1

t¼0

F
t

s q
ð1Þ
a þ t

� �

0

@

1

A� 1

2

4

3

5fY qð1Þ
a þ t

� �

dt: (4.114)

Subsequently, several linear approximations will be performed relying on the

assumption that the loss quantile of the granular portfolio is close to the systematic

loss quantile and the linearizations lead to minor errors. Linearizing the density

function at q
ð1Þ
a leads to

fY qð1Þ
a þ t

� �

� fY qð1Þ
a

� �

þ t � dfYðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

: (4.115)

The argument of the normal distribution can be approximated as

t � 1

s q
ð1Þ
a þ t

� �

0

@

1

A � t � 1

s q
ð1Þ
a

� �þ t � d

dt

1

s q
ð1Þ
a þ t

� �
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4
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5

t¼0

0

B

@
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A

¼ t � 1

s q
ð1Þ
a

� �þ t � � 1

s2 q
ð1Þ
a þ t

� �

d

dt
s qð1Þ

a þ t
� �

2

4

3

5

t¼0

0
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@

1

C

A

¼ t

s q
ð1Þ
a

� �� t2

s2 q
ð1Þ
a

� �
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dt
s qð1Þ

a þ t
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t¼0

0

@

1

A:

(4.116)

With the substitution y :¼ q
ð1Þ
a þ t, so dy=dt ¼ 1 and yðt ¼ 0Þ ¼ q

ð1Þ
a , the

derivative of the conditional standard deviation can be rewritten as

d

dt
s qð1Þ

a þ t
� �

�

�

�

t¼0
¼ d

dy
sðyÞj

y¼q
ð1Þ
a
: (4.117)
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Inserting (4.115)–(4.117) in (4.114) leads to

Dp ¼
ð

0

t¼�1
F

t

s q
ð1Þ
a

� �� t2

s2 q
ð1Þ
a

� �

dsðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

0

@

1

A

0

@

� fY qð1Þ
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� �
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�

�

�
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" #
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!

¼: Dp1 � Dp2: (4.118)

When the substitution t :¼ �t for the term Dp2 is performed and the symmetry of

the normal distribution Fð�xÞ � 1 ¼ �FðxÞ is used, both terms Dp1 and Dp2 are

identical except for the algebraic signs:

Dp2 ¼ �
ð

�1

t¼0

F � t

s q
ð1Þ
a

� �þ t2

s2 q
ð1Þ
a

� �
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s q
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 !

dt: (4.119)

A linearization of the normal distributions in Dp1 and Dp2 results in
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Using this approximation, the terms Dp1 and Dp2 from (4.118) can be written as

Dp1;2 �
ð

0

t¼�1
F

t

s q
ð1Þ
a

� �

0

@

1

A

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼:b0

� fY qð1Þ
a

� �

|fflfflfflfflffl{zfflfflfflfflffl}

¼:g0

� t
dfYðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼:g1

2

6

6

6

4

3

7

7

7

5

dt



ð

0

t¼�1

t2

s2 q
ð1Þ
a

� �

dsðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

’
t

s q
ð1Þ
a

� �

0

@

1

A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:b1

� fY qð1Þ
a

� �

|fflfflfflfflffl{zfflfflfflfflffl}

¼:g0

� t
dfYðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼:g1

2

6

6

6
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3

7

7

7

5

dt:

(4.121)

The summands b0; g0 are the points around which the linearizations have been

performed. The summands b1; g1 have resulted from the first-order approxima-

tions. Using this notation, the shift in probability Dp of (4.118) can notably be

simplified to

Dp � Dp1 � Dp2

�
ð

0

t¼�1
b0 g0 þ g1ð Þ � b1 g0 þ g1ð Þdt�

ð

0

t¼�1
b0 g0 � g1ð Þ þ b1 g0 � g1ð Þdt

¼
ð

0

t¼�1
2b0g1 � 2b1g0dt:

(4.122)

Fortunately, both integrands are already first-order terms whereas the cross-

terms b1 � g1 vanish.232 Thus, there is no need for a further linearization. The

remaining expression is

Dp � 2
dfYðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

ð

0

t¼�1
t � F t

s q
ð1Þ
a

� �

0

@

1

Adt

� 2
dsðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

fY q
ð1Þ
a

� �

s2 q
ð1Þ
a

� �

ð

0

t¼�1
t2 � ’ t

s q
ð1Þ
a

� �

0

@

1

Adt: (4.123)

232The omission of the zeroth-order terms could be foreseen as only the deviation from the

systematic loss quantile is analyzed.
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In order to solve the integrals, the substitution y :¼ t=sðqð1Þ
a Þ is performed, with

dy=dt ¼ 1=sðqð1Þ
a Þ, yðt ¼ �1Þ ¼ �1 and yðt ¼ 0Þ ¼ 0:

Dp � 2
dfYðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

ð

0

y¼�1
y � s qð1Þ

a

� �

� FðyÞ � s qð1Þ
a

� �

dy

� 2
dsðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

fY q
ð1Þ
a

� �

s2 q
ð1Þ
a

� �

ð

0

y¼�1
y � s qð1Þ

a

� �h i2

� ’ðyÞ � s qð1Þ
a

� �

dy

¼ 2
dfYðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

s2 qð1Þ
a

� �

ð

0

y¼�1
y � FðyÞdy

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�

� 2
dsðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

fY qð1Þ
a

� �

� s qð1Þ
a

� �

ð

0

y¼�1
y2 � ’ðyÞdy

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

��

:

(4.124)

For the second integral (**), it is used that the integrand is axially symmetric to

the y-axis. Furthermore, the definition of the variance is utilized, considering that

the standard normal distribution has mean mY ¼ 0 and variance s2Y ¼ 1:

ð

0

y¼�1
y2 � ’ðyÞdy ¼ 1

2

ð

1

y¼�1
y2 � ’ðyÞdy ¼ 1

2

ð

1

y¼�1
y� mYð Þ2 � ’ðyÞdy:

¼ 1

2
sY2 ¼ 1

2
: (4.125)

The first integral (*) can be calculated with integration by parts:

ð

0

y¼�1
y � FðyÞdy ¼ 1

2
y2 � FðyÞ


 �0

y¼�1
�

ð

0

y¼�1

1

2
y2 � ’ðyÞ dy: (4.126)

For y ¼ 0, the first term is zero but for y ¼ �1, the result is not obvious. Using

l’Hôpital’s rule several times leads to233

233For functions f, g with lim
x!x0

f ðxÞ ¼ lim
x!x0

gðxÞ ¼ 0 or lim
x!x0

f ðxÞ ¼ lim
x!x0

gðxÞ ¼ 1 it is true

that lim
x!x0

f ðxÞ
gðxÞ ¼ lim

x!x0

f 0ðxÞ
g0ðxÞ if lim

x!x0

f ðxÞ
gðxÞ exists; cf. Bronshtein et al. (2007), p. 54, (2.26).
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lim
y!�1

1

2
y2 � FðyÞ ¼ lim

y!1
1

2

F �yð Þ
y�2

¼l0Hôpital
lim
y!1

1

2

�’ �yð Þ
�2y�3

¼ lim
y!1

1

4

y3

ey2 2=
¼l0Hôpital

lim
y!1

1

4

3y2

y � ey2 2=

¼ lim
y!1

3

4

y

ey2 2=
¼l0Hôpital

lim
y!1

3

4

1

y � ey2 2=
¼ 0; (4.127)

so that the first term of (4.126) vanishes. Using the result of the previous integration,

(4.126) equals � 1=4. Hence, Dp from (4.124) is given as

Dp � � 1

2

dfYðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

s2 qð1Þ
a

� �

� dsðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

fY qð1Þ
a

� �

� s qð1Þ
a

� �

: (4.128)

Because of s ds
dy ¼ 1

2
ds2
ds

ds
dy ¼ 1

2
ds2
dy , (4.128) is equivalent to

Dp � � 1

2

dfYðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

s2 qð1Þ
a

� �

þ 1

2

ds2ðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

fY qð1Þ
a

� �

" #

¼ � 1

2

dfYðyÞ
dy

s2ðyÞ þ ds2ðyÞ
dy

fYðyÞ

 �

y¼q
ð1Þ
a

¼ � 1

2

d

dy
fYðyÞ � s2ðyÞ
� �

�

�

y¼q
ð1Þ
a
: (4.129)

This expression is the linearized deviation of the specified probability p ¼ 1� a
if only the systematic loss is considered for calculation of the loss quantile.

As initially noticed, the determined shift of the probability has to be transformed

into a shift of the loss quantile (cf. Fig. 4.12). If the probability density function of

the portfolio loss is assumed to be almost linear in a region around the quantile, the

required transformation is

Dp � 1

2
fY qð1Þ

a

� �

þ fY qð1Þ
a þ Dq

� �h i

Dq: (4.130)

Two last first-order approximations lead to

Dp � 1

2
fY qð1Þ

a

� �

þ fY qð1Þ
a

� �

þ Dq
dfYðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

 !" #

Dq

¼ fY qð1Þ
a

� �

� Dqþ 1

2

dfYðyÞ
dy

�

�

�

�

y¼q
ð1Þ
a

Dqð Þ2

� fY qð1Þ
a

� �

� Dq: (4.131)
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Inserting (4.129) into (4.131) finally leads to

Dq � Dp

fY q
ð1Þ
a

� � � � 1

2

1

fYðyÞ
d

dy
fYðyÞ � s2ðyÞ
� �

�

�

y¼q
ð1Þ
a

¼ � 1

2

1

fYðyÞ
d

dy
fYðyÞ � V ~L j ~Y ¼ y

� �� �
�

�

y¼q
ð1Þ
a
: (4.132)

Using (4.8), this can be written as

Dq � � 1

2fxðxÞ
d

dx

fxðxÞV ~L j ~x ¼ x
� �

d
dxE

~L j ~x ¼ x
� �

 !
�

�

�

�

�

x¼q1�a ~xð Þ
; (4.133)

which is identical to the first-order granularity adjustment of Sect. 4.2.1.1.234

4.5.2 First and Second Derivative of VaR

The derivatives of VaR will be determined on the basis of Rau-Bredow (2002,

2004) in the following. Consider two continuous random variables ~Y and ~Z with

fY

Dp

qa
(¥) qa

(¥) + Dq

P
ro

b
ab

ili
ty

 d
en

si
ty

Losses

Fig. 4.12 Relation between the shift of the probability and the loss quantile

234Cf. Wilde (2001).
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joint probability density function f ðy; zÞ and a variable l 2 R. The VaR (the

quantile) q :¼ qa ~L
� �

of ~L ¼ ~Y þ l ~Z can implicitly be defined as235

P ~L � q
� � ¼ a: (4.134)

Furthermore, the formula of the conditional density function will be used:236

fZ j Y¼yðzÞ ¼ fY; Zðy; zÞ
fYðyÞ ; (4.135)

leading to237

fZ j YþlZ¼qðzÞ ¼ fYþlZ;Z q; zð Þ
fYþlZðqÞ ¼ fY; Z q� lz; zð Þ

fYþlZðqÞ : (4.136)

4.5.2.1 First Derivative

As the derivative of the constant a is zero, the derivative of (4.134) is

0 ¼ @

@l
P ~Y þ l ~Z � q
� �

¼ @

@l

ð

1

z¼�1

ð

q�lz

y¼�1
fY; Zðy; zÞ dy dz

¼
ð

1

z¼�1

@

@l

ð

q�lz

y¼�1
fY; Zðy; zÞ dy dz: (4.137)

Performing the inner integration and the differentiation leads to

0 ¼
ð

1

z¼�1

dq

dl
� z

	 


fY; Z q� lz; zð Þ dz: (4.138)

235Cf. (2.14). The slightly different expressions compared to Rau-Bredow (2002) result from a
instead of (1–a) representing the confidence level.
236Cf. Pitman (1999), p. 416.
237Cf. Rau-Bredow (2004), p. 66.
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Using the formula for the conditional density function (4.135) and the integral

representation of the conditional expectation, we get

0 ¼
ð

1

z¼�1

dq

dl
� z

	 


fYþlZðqÞ fZ j YþlZ¼qðzÞ dz

¼ fYþlZðqÞ dq

dl

ð

1

z¼�1
fZ jYþlZ¼qðzÞ dz�

ð

1

z¼�1
z fZ j YþlZ¼qðzÞ dz

0

@

1

A

¼ fYþlZðqÞ dq

dl
� 1� E ~Z j ~Y þ l ~Z ¼ q

� �

	 


: (4.139)

This leads to the first derivative of VaR:

dVaRa ~Y þ l ~Z
� �

dl
¼ E ~Z j ~Y þ l ~Z ¼ qa ~Y þ l ~Z

� �� �

: (4.140)

The first derivative at l ¼ 0 is

dVaRa ~Y þ l ~Z
� �

dl

�

�

�

�

�

l¼0

¼ E ~Z j ~Y ¼ qa ~Y
� �� �

: (4.141)

4.5.2.2 Second Derivative

Similar to (4.137), the second derivative of (4.134) is

0 ¼ @2

@l2
P ~Y þ l ~Z � q
� � ¼ @2

@l2

ð

1

z¼�1

ð

q�lz

y¼�1
fY; Zðy; zÞ dy dz: (4.142)

With the first derivative of (4.138) and applying the product rule, this leads to

0 ¼ @

@l

ð

1

z¼�1

dq

dl
� z

	 


fY; Z q� lz; zð Þ dz

¼
ð

1

z¼�1

d2q

d2l

	 


fY; Z q� lz; zð Þ þ dq

dl
� z

	 


@fY; Z q� lz; zð Þ
@l

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

�

dz: (4.143)
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The derivative (*) can be determined with the chain rule:

@fY; Z q� lz; zð Þ
@l

¼ @ q� lzð Þ
@l

@fY; Z q� lz; zð Þ
@ q� lzð Þ

@q

@q

¼ dq

dl
� z

	 


@fY; Z q� lz; zð Þ
@q

1

@ q� lzð Þ @q=

¼ dq

dl
� z

	 


@fY; Zðq� lz; zÞ
@q

: (4.144)

Inserting (4.144) and the conditional density (4.136) into (4.143) results in

0 ¼
ð

1

z¼�1

d2q

d2l

	 


fY; Z q� lz; zð Þ þ dq

dl
� z

	 
2
@fY; Z q� lz; zð Þ

@q
dz

¼ d2q

d2l

	 


ð

1

z¼�1
fYþlZðqÞ fZ j YþlZ¼qðzÞdz

þ
ð

1

z¼�1

dq

dl
� z

	 
2 @ fYþlZðqÞ fZ j YþlZ¼qðzÞ
� �

@q
dz: (4.145)

The first summand of (4.145) equals

d2q

d2l

	 


fYþlZðqÞ
ð

1

z¼�1
fZ j YþlZ¼qðzÞdz ¼ d2q

d2l

	 


fYþlZðqÞ: (4.146)

In order to calculate the second summand of (4.145), the first derivative from

(4.140) as well as the integral representation of the conditional variance is used:

ð

1

z¼�1

dq

dl
� z

	 
2 @ fYþlZðqÞ fZ jYþlZ¼qðzÞ
� �

@q
dz

¼
ð

1

z¼�1
z� E ~Z j ~Y þ l ~Z ¼ q

� �� �2 @ fYþlZðqÞfZ j YþlZ¼qðzÞ
� �

@q
dz

¼ d

dy
fYþlZðyÞ

ð

1

z¼�1
z� E ~Z j ~Y þ l ~Z ¼ q

� �� �2
fZ j YþlZ¼yðzÞdz

0

@

1

A

�

�

�

�

�

�

y¼q

¼ d

dy
fYþlZðyÞV ~Z j ~Y þ l ~Z ¼ y

� �� �

�

�

�

�

y¼q

: (4.147)
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With these summands, (4.145) can be written as

0 ¼ d2q

d2l

	 


fYþlZðyÞ þ d

dy
fYþlZðyÞV ~Z j ~Y þ l ~Z ¼ y

� �� �

�

�

�

�

y¼q

: (4.148)

Thus, the second derivative of VaR is equal to

d2VaRa ~Y þ l ~Z
� �

d2l
¼ � 1

fYþlZðyÞ �
d

dy
fYþlZðyÞV ~Z j ~Y þ l ~Z ¼ y

� �� �

�

�

�

�

y¼qa ~Yþl ~Zð Þ
:

(4.149)

The second derivative at l ¼ 0 is

d2VaRa ~Y þ l ~Z
� �

d2l

�

�

�

�

�

l¼0

¼ � 1

fYðyÞ
d

dy
fYðyÞV ~Z j ~Y ¼ y

� �� �

�

�

�

�

y¼qa ~Yð Þ
: (4.150)

4.5.3 Probability Density Function of Transformed Random
Variables

Let ~X be a random variable with density fXðxÞ and let ~Y be a random variable with
~Y ¼ gð ~XÞ. If g is strictly monotonous and differentiable, the probability density

function (PDF) of ~Y can be transformed using the inverse function theorem238:

fYðyÞ ¼ fX g�1ðyÞ� � � dg�1ðyÞ
dy

�

�

�

�

�

�

�

�

: (4.151)

With g�1ðyÞ ¼ x, we obtain

dg�1ðyÞ
dy

�

�

�

�

�

�

�

�

¼ dx

dy

�

�

�

�

�

�

�

�

¼ 1

dy dx=

�

�

�

�

�

�

�

�

; (4.152)

which leads to

fYðyÞ ¼ fXðxÞ
dy dx=j j : (4.153)

238Cf. Roussas (2007), p. 236.
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4.5.4 VaR-Based First-Order Granularity Adjustment for a
Normally Distributed Systematic Factor

The granularity adjustment (4.10) can be expressed as

Dl1 ¼ � 1

2’

d

dx

’�2;c
dm1;c dx=

 !
�

�

�

�

�

x¼F�1 1�að Þ

¼ � 1

2’

d

dx
’�2;c
� � 1

dm1;c dx=
þ ’�2;c

d

dx

1

dm1;c dx=

 !" #
�

�

�

�

�

x¼F�1 1�að Þ

¼ � 1

2

1

’

d

dx
’�2;c
� � 1

dm1;c dx=
þ �2;c

d

dx

1

dm1;c dx=

 !" #
�

�

�

�

�

x¼F�1 1�að Þ

¼ � 1

2

�2;c
’

d’

dx
þ d�2;c

dx

	 


1

dm1;c dx=
� �2;c

d2m1;c dx2
�

dm1;c dx=
� �2

" #
�

�

�

�

�

x¼F�1 1�að Þ
: (4.154)

Because of

1

’

d’

dx
¼ dðln’Þ

dx
¼ d

dx
ln

1
ffiffiffiffiffiffi

2p
p exp � x2

2

	 

 �	 


¼ d

dx
ln

1
ffiffiffiffiffiffi

2p
p � x2

2

	 


¼ �x;

(4.155)

the granularity adjustment (4.154) can be written as

Dl1 ¼ 1

2

x � �2;c
dm1;c dx=

� d�2;c dx=

dm1;c dx=
þ �2;c � d2m1;c dx2

�

dm1;c dx=
� �2

" #
�

�

�

�

�

x¼F�1 1�að Þ
: (4.156)

For the calculation of (4.156), the conditional expectation and variance have to

be determined. Assuming stochastically independent LGDs and with ELGD and

VLGD for the expectation and the variance of the LGD, respectively, the required

moments are given as239

m1;c ¼ E

X

n

i¼1

wi � gLGDi � 1 ~Dif g j ~x ¼ x

 !

¼
X

n

i¼1

wi � ELGDi � E 1 ~Dif g j ~x ¼ x
� �

¼
X

n

i¼1

wi � ELGDi � piðxÞ; (4.157)

239Pykhtin and Dev (2002) corrected the formulas of Wilde (2001), who neglected the last term of

the following conditional variance.
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�2;c ¼ V

X

n

i¼1

wi � gLGDi � 1 ~Dif g j ~x ¼ x

 !

¼
X

n

i¼1

w2
i � V gLGDi � 1 ~Dif g j ~x ¼ x

� �

¼
X

n

i¼1

w2
i � E gLGDi � 1 ~Dif g j ~x ¼ x

h i2
	 


� E
2
gLGDi � 1 ~Dif g j ~x ¼ x

� �


 �

¼
X

n

i¼1

w2
i � E gLGDi

2
� �

� E 1 ~Dif g j ~x ¼ x
h i2
	 


� ELGDi � piðxÞð Þ2

 �

¼
X

n

i¼1

w2
i � ELGD2

i þ VLGDi

� � � piðxÞ � ELGD2
i � p2i ðxÞ

� �

:

(4.158)

4.5.5 VaR-Based First-Order Granularity Adjustment for
Homogeneous Portfolios

For homogeneous portfolios, the granularity adjustment formula (4.28) can be

simplified to

Dl1 ¼ 1

2n
F�1 að Þ ELGD2 þ VLGDð ÞFðzÞ � ELGD2 F2ðzÞ

ELGD
ffiffiffi

r
p ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

=
� �

’ðzÞ

"

� ELGD2 þ VLGDð Þ � 2ELGD2 FðzÞ
ELGD

� ELGD2 þ VLGDð ÞFðzÞz� ELGD2 F2ðzÞz
ELGD � ’ðzÞ

�

z¼F�1ðPDÞþ ffiffirp
F�1 að Þ

ffiffiffiffiffi

1�r
p

¼ 1

2n

ELGD2 þ VLGD

ELGD

ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

F�1 að ÞFðzÞ
ffiffiffi

r
p

’ðzÞ



� 1� FðzÞz
’ðzÞ

�	

�ELGDFðzÞ
ffiffiffiffiffiffiffiffiffiffiffi

1� r
p

F�1 að ÞFðzÞ
ffiffiffi

r
p

’ðzÞ



� 2� FðzÞz
’ðzÞ

�


z¼F�1ðPDÞþ ffiffirp
F�1 að Þ

ffiffiffiffiffi

1�r
p

¼ 1

2n

ELGD2 þ VLGD

ELGD

FðzÞ
’ðzÞ

F�1 að Þ 1� 2rð Þ þ F�1ðPDÞ ffiffiffi

r
p

ffiffiffi

r
p ffiffiffiffiffiffiffiffiffiffiffi

1� r
p � 1


 �	

�ELGD � FðzÞ FðzÞ
’ðzÞ

F�1 að Þ 1� 2rð Þ þ F�1ðPDÞ ffiffiffi

r
p

ffiffiffi

r
p ffiffiffiffiffiffiffiffiffiffiffi

1� r
p � 2


 �


z¼F�1ðPDÞþ ffiffirp
F�1 að Þ

ffiffiffiffiffi

1�r
p

:

(4.159)
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4.5.6 Arbitrary Derivatives of VaR

The following determination of all derivatives of VaR is based on Wilde (2003).

The quantile qa of ~L ¼ ~Y þ l ~Z can be written as qðlÞ to denote that the quantile

depends on the parameter l. Using this notation, the quantile can be defined

implicitly as an argument of the distribution function F by FðqðlÞ; lÞ :¼
P ~Y þ l ~Z � qað ~Y þ l ~ZÞ� � ¼ a. In order to calculate the derivatives of qa, at first

all derivatives of F are determined in Sect. 4.5.6.2.1. As the quantile is defined

implicitly, the implicit derivatives of FðqðlÞ; lÞ � a ¼ 0 have to be determined.

This is done by application of the residue theorem in Sect. 4.5.6.2.2. As a next step,

the result will be expressed in combinatorial form in Sect. 4.5.6.2.3. Using the

results of the derivatives of the distribution function and the implicit derivatives, it

is possible to determine all derivatives of VaR. This is performed in Sect. 4.5.6.2.4.

As the resulting formula is quite complex, an expression for the first five derivatives

of VaR is determined in Sect. 4.5.7. The mathematical basics to the Laplace trans-

form, complex residues, and partitions, which are needed within the derivation, are

presented in the following Sect. 4.5.6.1.

4.5.6.1 Mathematical Basics

4.5.6.1.1 Laplace Transform and Dirac’s Delta Function

The Laplace transform L of a function f ðtÞ with t 2 R
þ is given as240

L f ðtÞf g½ �ðsÞ :¼
ð

1

t¼�0

f ðtÞe�stdt ¼: YðsÞ (4.160)

with s ¼ cþ io 2 C, where C denotes the set of all complex numbers. The

inverse Laplace transform L�1 can be represented as241

L�1 YðsÞf g� �ðtÞ :¼ 1

2pi

ð

cþi1

s¼c�i1
YðsÞestds ¼ L�1 L f ðtÞf gf g ¼ f ðtÞ: (4.161)

Dirac’s delta function dðxÞ can be defined as242

ð

1

�1
dðxÞ f x� x0ð Þdx ¼ f x0ð Þ: (4.162)

240Cf. Bronshtein et al. (2007), p. 710, (15.5).
241Cf. Bronshtein et al. (2007), p. 710, (15.8).
242Weisstein (2009a).
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A more illustrative, heuristic definition of dðxÞ is given by

dðxÞ ¼ 0 if x 6¼ 0;
1 if x ¼ 0;

�

and

ð

1

�1
dðxÞdx ¼ 1: (4.163)

Using the definition of the Laplace transform and the inverse Laplace transform,

Dirac’s delta function can be written as

dðtÞ ¼ L�1 L dðtÞf gf g ¼ L�1

ð

1

t¼�0

dðtÞe�stdt

8

<

:

9

=

;

¼ L�1 e�s�0� � ¼ L�1 1f g ¼ 1

2pi

ð

cþi1

s¼c�i1
1 � estds: (4.164)

4.5.6.1.2 Laurent Series, Singularities, and Complex Residues

If f ðzÞ is differentiable in all points of an open subset of the complex plane

H � C, then we call f ðzÞ holomorphic on H.243 For a function f ðzÞ, which is

holomorphic in a simply connected region H, according to the Cauchy integral
theorem we have244

þ

C

f ðzÞdz ¼ 0; (4.165)

with C being a closed path in H. If a function f ðzÞ is holomorphic in z0 and in a

circular region around z0, we can perform a Taylor series expansion, which is

analogous to the real plane:245

f ðzÞ ¼
X

1

n¼0

f ðnÞðz0Þ
n!

ðz� z0Þn: (4.166)

However, if a function f ðzÞ is only holomorphic inside the annulus between two

concentric circles with center z0 and radii r1 and r2, which is the region

243Cf. Bronshtein et al. (2007), p. 672, Sect. 14.1.2.1.
244Cf. Bronshtein et al. (2007), p. 688, (14.41).
245Cf. Bronshtein et al. (2007), p. 691, (14.49).
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H ¼ z j 0 � r1 < z� z0j j< r2f g, the function f ðzÞ can be expressed as a generalized
power series, the so-called Laurent series:246

f ðzÞ ¼
X

1

n¼�1
anðz� z0Þn ¼

X

�1

n¼�1
anðz� z0Þn

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

principal part

þ
X

1

n¼0

anðz� z0Þn
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

analytic part

: (4.167)

Thus, the function has to be holomorphic only inside the annulus and not inside

the inner circle or outside the outer circle.

If a function f ðzÞ is holomorphic in a neighborhood of z0 but not in the point z0,
then z0 is called an isolated singularity of the function f ðzÞ. The concrete type of a
singularity can be classified according to the analytic part of the Laurent series:247

l The point z0 is a removable singularity if an ¼ 0 8n< 0. In this case, the Laurent

series is identical to the Taylor series above.
l The point z0 is a pole of order m if the principal part consists of a finite number of

terms with am 6¼ 0 and an ¼ 0 for n<m< 0.
l The point z0 is an essential singularity if the principal part consists of an infinite

number of terms.

The coefficient a�1 of the Laurent series (4.167) around an isolated singularity z0
is the residue of f ðzÞ in z0. This will subsequently be denoted by Resz0ð f Þ. The
residue can also be defined as

a�1 ¼ Resz0ð f Þ ¼
1

2pi
�
þ

C

f ðzÞ dz; (4.168)

where C is a contour with winding number 1 in a holomorphic region H around an

isolated singularity in z0. If the contour C encloses a finite number of isolated

singularities z1; z2; :::; zm with corresponding residues a�1ðzmÞ ðm ¼ 1; :::;mÞ, we
have

þ

C

f ðzÞdz ¼ 2pi
X

m

m¼1

a�1ðzmÞ; (4.169)

which is the residue theorem.248

The residue Resz0ð f Þ with z0 being a pole of order m can be calculated as249

Resz0ð f Þ ¼ lim
z!z0

1

ðm� 1Þ!
dm�1

dzm�1
z� z0ð Þm � f ðzÞ½ �: (4.170)

246Cf. Bronshtein et al. (2007), p. 692, (14.51), and Spiegel (1999), p. 144.
247Cf. Bronshtein et al. (2007), p. 692 f., Sect. 14.3.5.1.
248Cf. Bronshtein et al. (2007), p. 694, (14.56).
249Cf. Rowland and Weisstein (2009).
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For a function f ¼ gðzÞ hðzÞ= , where h has a simple zero in z0, the residue can be
determined with

Resz0ð f Þ ¼
gðz0Þ
h0ðz0Þ : (4.171)

4.5.6.1.3 Partitions

A partition p of a positive integer m is a way to express m as a sum of positive

integers in non-decreasing order. A partition p of m will be denoted by p 
 m. A
partition p can be indicated by p ¼ 1e1 ; 2e2 ; :::;mem , where ei is the frequency of the
number i in the partition. The number of summands of p is expresses by pj j, which
is the sum pj j ¼ e1 þ e2 þ :::þ em. The notation p̂ indicates the partition which

results if each summand of a partition p is increased by 1. This means that for p 
 m
the partition p̂ refers to a specific partition of mþ pj j.250

Example

l For m ¼ 5, there exist seven partitions p 
 m: p 
 m ¼ 1þ 1þ 1þ 1þ 1;f
1þ 1þ 1þ 2; 1þ 2þ 2; 1þ 1þ 3; 2þ 3; 1þ 4; 5g: Thus, a concrete parti-
tion for m ¼ 5 is p ¼ 3þ 1þ 1.

l This partition can also be denoted by p ¼ 1e1 2e2 :::mem ¼ 1231, leading to

e1 ¼ 2; e2 ¼ 0; e3 ¼ 1; e4 ¼ 0, and e5 ¼ 0. Thus, the number m results from:

m ¼ 1 � e1 þ 2 � e2 þ :::þ m � em ¼ 1 � 2þ 3 � 1 ¼ 5.
l The number of summands of this partition is p ¼ 1231

�

�

�

� ¼
e1 þ e2 þ :::þ em ¼ 2þ 1 ¼ 3.

l The partition p̂ appendant to the partition p ¼ 3þ 1þ 1 is p̂ ¼ 4þ 2þ 2, which

is a specific partition of mþ pj j ¼ 5þ 3 ¼ 8.

4.5.6.2 Determination of the Derivatives

4.5.6.2.1 Derivatives of the Distribution Function

Proposition. The derivatives of the distribution function of losses

FYþlZðyÞ ¼ Pð ~Y þ l ~Z � yÞ at l ¼ 0 are given as251

@m

@lm
FYþlZðyÞ

�

�

�

�

l¼0

¼ ð�1Þm dm�1

dym�1
E ~Z

m j ~Y ¼ y
� �

fYðyÞ
� �

: (4.172)

250Cf. Wilde (2003), p. 3 f.
251See Martin and Wilde (2002), p. 124 f., and Wilde (2003), p. 2 f.
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Proof. Using the definition of the Laplace transform (4.160) and recognizing that

the loss ~L ¼ ~Y þ l ~Z cannot go below zero so that the probability density function is

fYþlZðyÞ ¼ 0 for all y< 0, we get for the Laplace transform of fYþlZðyÞ

L fYþlZðyÞf g ¼
ð

1

y¼�0

e�syfYþlZðyÞdy ¼
ð

1

y¼�1
e�syfYþlZðyÞdy: (4.173)

With the definition of the expectation operator

E g ~X
� �� � ¼

ð

1

x¼�1
gðxÞfXðxÞdx; (4.174)

(4.173) is equivalent to

L fYþlZðyÞf g ¼
ð

1

y¼�1
e�syfYþlZðyÞdy ¼ E e�s ~Yþl ~Zð Þ� �

: (4.175)

Applying the definition of the inverse Laplace transform (4.161) and using the

moment generating function M of ~Y þ l ~Z, which is defined as252

MYþlZðsÞ ¼ E es
~Yþl ~Zð Þ� �

; (4.176)

the probability density function equals253

fYþlZðyÞ ¼ L�1 L fYþlZðyÞf gf g ¼ L�1 MYþlZ �sð Þf g

¼ 1

2pi

ð

cþi1

s¼c�i1
MYþlZðsÞe�syds: (4.177)

Thus, the derivatives of the probability density function at l ¼ 0 can be deter-

mined using the approach

@m

@lm
fYþlZðyÞ

�

�

�

�

l¼0

¼ 1

2pi

ð

cþi1

s¼c�i1

@m

@lm
MYþlZðsÞe�syds

�

�

�

�

�

�

l¼0

: (4.178)

252Cf. Billingsley (1995), p. 146 ff., for details about moment generating functions.
253Cf. Miller and Childers (2004), p. 118.
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Applying definition (4.176), we obtain for the derivatives of M

@mMYþlZðsÞ
@lm

�

�

�

�

l¼0

¼ @m

@lm
E es

~Yþl ~Zð Þ� �

�

�

�

�

l¼0

¼ E
@m

@lm
es

~Yþl ~Zð Þ
	 


�

�

�

�

l¼0

¼ E sm ~Z
m
es

~Yþl ~Zð Þ� �
�

�

�

l¼0

¼ E sm ~Z
m
es

~Y
� �

: (4.179)

With (4.179) and smes
~Y�yð Þ ¼ ð�1Þm @m

@ym e
s ~Y�yð Þ, (4.178) is equivalent to

@m

@lm
fYþlZðyÞ

�

�

�

�

l¼0

¼ 1

2pi

ð

cþi1

s¼c�i1
E sm ~Z

m
es

~Y
� �

e�syds

¼ E
1

2pi
~Z
m

ð

cþi1

s¼c�i1
smes

~Y�yð Þds
0

@

1

A

¼ ð�1Þm dm

dym
E ~Z

m 1

2pi

ð

cþi1

s¼c�i1
es

~Y�yð Þds
0

@

1

A: (4.180)

According to (4.164), Dirac’s delta function can be written as

dðtÞ ¼ 1

2pi

ð

cþi1

s¼c�i1
1 � estds; (4.181)

which leads to

d ~Y � y
� � ¼ 1

2pi

ð

cþi1

s¼c�i1
1 � es ~Y�yð Þds (4.182)

for t ¼ ~Y � y. Hence, (4.180) is equivalent to

@m

@lm
fYþlZðyÞ

�

�

�

�

l¼0

¼ ð�1Þm dm

dym
E ~Z

m
d ~Y � y
� �� �

: (4.183)
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With E½ ~Zmdð ~Y � yÞ� ¼ E½ ~Zm j ~Y ¼ y� � fYðyÞ, the derivatives of the distribution

function result after integration of (4.183):

@m

@lm
FYþlZðyÞ

�

�

�

�

l¼0

¼ ð�1Þm dm�1

dym�1
E ~Z

m j ~Y ¼ y
� �

fYðyÞ
� �

; (4.184)

which is proposition (4.172). In order to determine the derivatives of the quantile

dmq dlm= , the implicit derivatives of FðqðlÞ; lÞ � a ¼ 0 with FðqðlÞ; lÞ :¼
F ~Yþl ~Zðqað ~Y þ l ~ZÞÞ ¼ P ~Y þ l ~Z � qað ~Y þ l ~ZÞ� �

will be calculated in the following.

4.5.6.2.2 Implicit Derivatives: Complex Residue Form

Consider a function Gðz;wÞ of two variables z;w 2 C. Suppose there exists

an analytic function w ¼ wðzÞ in a region around a pole z ¼ z0, such that

Gðz;wðzÞÞ ¼ 0. The first derivative dw dz= can be determined as follows:254

0 ¼ @G

@z
þ @G

@w
� dw
dz

, dw

dz
¼ � @G=@z

@G=@w
¼: � Gz

Gw
: (4.185)

Proposition. For Gwðz0;w0Þ 6¼ 0, the derivatives dmw dzm= are given as

dmw

dzm
¼ �Resw0

@m�1

@zm�1

Gzðz;wÞ
Gðz;wÞ

	 

�

�

�

�

z¼z0

" #

: (4.186)

Proof. According to (4.186), the first derivative is

dw

dz
¼ �Resw0

Gzðz;wÞ
Gðz;wÞ

	 

�

�

�

�

z¼z0

" #

¼ �Resw0

Gzðz0;wÞ
Gðz0;wÞ

 �

: (4.187)

As z0 is a pole of G and Gðz0;wÞ ¼ 0, an application of (4.171) leads to

dw

dz
¼ �Resw0

Gzðz0;wÞ
Gðz0;wÞ

 �

¼ � Gz

Gw
; (4.188)

254For ease of notation, the derivatives @G @z= and @G @w= will be abbreviated to Gz and Gw,

respectively. The function G is not associated with a random variable, so confusion should not

arise with respect to the similar notation FYþlZðyÞ, where the subscript of the distribution function
F denotes the corresponding random variable.
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which is equal to (4.185). This shows that the formula is correct for m ¼ 1.

Applying the residue theorem (4.169)

X

m

m¼1

a�1ðzmÞ ¼ 1

2pi

þ

C

f ðzÞdz (4.189)

and recognizing that there is only a singularity at z ¼ z0 leads to

dw

dz
¼ �Resw0

Gzðz;wÞ
Gðz;wÞ

�

�

�

�

z¼z0

" #

¼ � 1

2pi

þ

C

Gzðz;wÞ
Gðz;wÞ

�

�

�

�

z¼z0

dw: (4.190)

Differentiating and applying the residue theorem again results in

dmw

dzm
¼ @m�1

@zm�1
� 1

2pi

þ

C

Gzðz;wÞ
Gðz;wÞ

�

�

�

�

z¼z0

dw

0

@

1

A

¼ � 1

2pi

þ

C

@m�1

@zm
Gzðz;wÞ
Gðz;wÞ

�

�

�

�

z¼z0

dw

¼ �Resw0

@m�1

@zm
Gzðz;wÞ
Gðz;wÞ

�

�

�

�

z¼z0

" #

; (4.191)

which is the proposition presented in (4.186). This result is a generalization of

the Lagrange inversion theorem.255

4.5.6.2.3 Implicit Derivatives: Combinatorial Form

In order to express the implicit derivatives (4.191) in combinatorial form, Faà di
Bruno’s formula will be used. According to this formula, the following equation

holds for a function g ¼ gðyÞ with y ¼ yðxÞ:256

dmg

dxm
¼
X

p
m

ap
d pj jg
dy pj j

dpy

dxp
; (4.192)

255Cf. Wilde (2003), p. 7.
256See Abramowitz and Stegun (1972), Sect. 24.1.2(C). The notation p 
 m indicates that p is a

partition of m, cf. Sect. 4.5.6.1.3.
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with ap ¼ m!
ð1!Þe1 �e1! �:::�ðm!Þem �em! ,

d pj jg
dy pj j as ordinary pj jth derivative, and

dpy

dxp
:¼ dy

dx

	 
ep1

� d2y

dx2

	 
ep2

� ::: � dmy

dxm

	 
epm

¼
Y

m

i¼1

diy

dxi

	 
epi

: (4.193)

Proposition. Equation (4.191) is equivalent to

dmw

dzm
¼

X

p
m;u
s�jpj�1

apaû
ð�1Þ pj jþ uj j pj jþ uj j�1ð Þ!

sþ uj jð Þ! pj j�1� sð Þ! Gw
� pj j� uj j@

ûG

@wû

@ pj j�1�s

@w pj j�1�s

@pG

@zp

�

�

�

�

z;w¼0

:

(4.194)

Proof. For ease of notation, it will be assumed that z0 ¼ w0 ¼ 0, so that

Gð0; 0Þ ¼ 0. With @ lnG @z= ¼ Gz G= , (4.191) is equivalent to

dmw

dzm
¼ �Resw0

@m�1

@zm�1

Gz

G

	 

�

�

�

�

z¼0


 �

¼ �Resw0

@m

@zm
lnG

�

�

�

�

z¼0


 �

: (4.195)

The mth derivative of lnG can be calculated using Faà di Bruno’s formula:

@m

@zm
lnG ¼

X

p
m

ap
d pj j lnG
dG pj j

@pG

@zp
¼
X

p
m

ap
d pj j�1

dG pj j�1

1

G

	 


@pG

@zp

¼
X

p
m

ap � ð�1Þ pj j�1 � pj j � 1ð Þ! � G� pj j � Gz;p; (4.196)

with @ pG @zp= ¼: Gz;p. This leads to

dmw

dzm
¼ �Resw0

@m

@zm
lnG

�

�

�

�

z¼0


 �

¼ �Resw0

X

p
m

ap � ð�1Þ pj j�1 � pj j � 1ð Þ! � G� pj j � Gz;p

�

�

�

�

�

z¼0

" #

: (4.197)

According to (4.170), the residue of a function h(w) in w0, with w0 being a pole

of order r, can be calculated as

Resw0
hðwÞ½ � ¼ lim

w!w0

1

r � 1ð Þ!
dr�1

dwr�1
w� w0ð Þr � hðwÞð Þ: (4.198)
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With r ¼ pj j, we obtain for the derivative (4.197)

dmw

dzm
¼�Resw0

X

p
m

ap � ð�1Þ pj j�1 � pj j � 1ð Þ! �G� pj j �Gz;p

�

�

�

�

�

z¼0

" #

¼� 1

pj j � 1ð Þ!
@ pj j�1

@w pj j�1
w pj j �

X

p
m

ap � ð�1Þ pj j�1 � pj j � 1ð Þ! �G� pj j �Gz;p

�

�

�

�

�

z¼0

" #
�

�

�

�

�

w¼0

¼�
X

p
m

ap � ð�1Þ pj j�1 � @ pj j�1

@w pj j�1

G

w

	 
� pj j
�Gz;p

�

�

�

�

�

z¼0

 !
�

�

�

�

�

w¼0

: ð4:199Þ

Using the Leibniz identity for arbitrary-order derivatives of products of func-

tions, we get:257

dmw

dzm
¼ �

X

p
m

ap � ð�1Þ pj j�1 � @ pj j�1

@w pj j�1

G

w

	 
� pj j
� Gz;p

�

�

�

�

�

z¼0

 !
�

�

�

�

�

w¼0

¼ �
X

p
m

ap � ð�1Þ pj j�1 �
X

pj j�1

s¼0

pj j � 1

s

	 


� @s

@ws

Gð0;wÞ
w

	 
� pj j
� @ pj j�1�s

@w pj j�1�s
Gz;pð0;wÞ
� �jw¼0: (4.200)

As a next step, the derivative @s

@ws

Gð0;wÞ
w

� �� pj j
contained in (4.200) will be

calculated. Performing a Taylor series expansion of Gð0;wÞ at w ¼ 0, we have

Gð0;wÞ ¼ Gð0; 0Þ þ w

1!
� @

@w
Gð0; 0Þ þ w2

2!
� @2

@w2
Gð0; 0Þ þ w3

3!
� @3

@w3
Gð0; 0Þ þ :::

¼ 0þ w � Gwð0; 0Þ þ
X

r�2

wr

r!
� @r

@wr
Gð0; 0Þ

¼ w � Gwð0; 0Þ þ
X

r�1

wrþ1

ðr þ 1Þ! �
@rþ1

@wrþ1
Gð0; 0Þ

¼ w � Gwð0; 0Þ þ w � Gwð0; 0Þ �
X

r�1

wr

ðr þ 1Þ! �
@rþ1

@wrþ1
Gð0; 0Þ � 1

Gwð0; 0Þ

¼ w � Gwð0; 0Þ � 1þ
X

r�1

wr

r!
� 1

r þ 1
�

@rþ1

@wrþ1 Gð0; 0Þ
@
@wGð0; 0Þ

 !

: ð4:201Þ

257See Weisstein (2009b).
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Thus, for Gð0;wÞ w= , we obtain

Gð0;wÞ
w

¼ Gwð0; 0Þ � 1þ
X

r�1

wr

r!
� 1

r þ 1
�

@rþ1

@wrþ1 Gð0; 0Þ
@
@wGð0; 0Þ

 !

¼ Gwð0; 0Þ � 1þ
X

r�1

wr

r!
� ’r

 !

; (4.202)

with ’r ¼ 1
rþ1

� @
rþ1 @wrþ1Gð0;0Þ=
@ @w= Gð0;0Þ : Another application of Faà di Bruno’s formula

results in:258

@s

@ws

Gð0;wÞ
w

	 
� pj j
¼ G� pj j

w ð0; 0Þ � @s

@ws
1þ

X

r�1

’r �
wr

r!

 !� pj j

¼ G� pj j
w ð0; 0Þ �

X

u
s

au � ’u � ð�1Þ uj j � pj j þ uj j � 1ð Þ!
pj j � 1ð Þ! ; (4.203)

with259

au � ’u ¼
s!

sþ uj jð Þ! � aû �
@ û

@wû
G 0; 0ð Þ � Gw

� uj j 0; 0ð Þ: (4.204)

Applying (4.203) and (4.204) to (4.200) leads to

dmw

dzm
¼�

X

p
m

ap �ð�1Þ pj j�1 �
X

pj j�1

s¼0

pj j�1

s

 !

@s

@ws

Gð0;wÞ
w

	 
� pj j
� @

pj j�1�s

@w pj j�1�s
Gz;pð0;wÞ
� �

�

�

�

�

�

w¼0

¼�
X

p
m

ap �ð�1Þ pj j�1 �
X

pj j�1

s¼0

pj j�1

s

 !

�G� pj j
w ð0;0Þ�

X

u
s

s!

sþ uj jð Þ!�aû �
@û

@wû
G 0;0ð Þ

�Gw
� uj j 0;0ð Þ�ð�1Þ uj j � pj jþ uj j�1ð Þ!

pj j�1ð Þ! � @
pj j�1�s

@w pj j�1�s
Gz;pð0;wÞ
� �

�

�

�

�

w¼0

¼�
X

p
m

ap �ð�1Þ pj j�1 �
X

pj j�1

s¼0

pj j�1

s

 !

�
X

u
s

aû �ð�1Þ uj j �G� pj j� uj j
w ð0;0Þ

� s! � pj jþ uj j�1ð Þ!
sþ uj jð Þ! � pj j�1ð Þ!�

@û

@wû
G 0;0ð Þ� @

pj j�1�s

@w pj j�1�s
Gz;pð0;wÞ
� �

�

�

�

�

w¼0

: ð4:205Þ

258Cf. Wilde (2003), p. 8.
259The relation between a partition u and û is explained in Sect. 4.5.6.1.3.
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Summarizing the sums, using ð�1Þ � ð�1Þ pj j�1 � ð�1Þ uj j ¼ ð�1Þ pj jþ uj j
, and

pj j � 1

s

	 


� s!

pj j � 1ð Þ! �
pj j þ uj j � 1ð Þ!
sþ uj jð Þ!

¼ pj j � 1ð Þ!
s! � pj j � 1� sð Þ! �

s!

pj j � 1ð Þ! �
pj j þ uj j � 1ð Þ!
sþ uj jð Þ!

¼ pj j þ uj j � 1ð Þ!
pj j � 1� sð Þ! � sþ uj jð Þ! ; (4.206)

(4.205) can be simplified to

dmw

dzm
¼

X

p
m;u
s�jpj�1

ap � aû � ð�1Þ pj jþ uj j � pj j þ uj j � 1ð Þ!
pj j � 1� sÞ! � ðsþ uj jð Þ!

� G� pj j� uj j
w ð0; 0Þ � @û

@wû
G 0; 0ð Þ

� @ pj j�1�s

@w pj j�1�s
Gz;pð0;wÞ
� �

�

�

�

�

w¼0

; (4.207)

which concludes the proof.

4.5.6.2.4 Completion of the Derivation

Application of (4.207) can be used to determine the derivatives of a quantile, which

will be calculated subsequently. With FðqðlÞ; lÞ � a ¼ 0 ¼ GðwðzÞ; zÞ, the deriva-
tives are given as

dmq

dlm

�

�

�

�

l¼0

¼ dmw

dzm

�

�

�

�

z¼0

; (4.208)

where the right-hand side can be determined with (4.207). The derivatives of G
contained in (4.207) can be calculated with (4.172):

@rþsG

@wr@zs

�

�

�

�

z¼0

¼ @rþsF

@yr@ls

�

�

�

�

l¼0

¼ @r

@yr
@sF

@ls

	 

�

�

�

�

l¼0

¼ dr

dyr
ð�1Þs d

s�1

dys�1
E ~Z

s j ~Y ¼ y
� �

fYðyÞ
� �

	 


¼ ð�1Þs d
rþs�1

dyrþs�1
E ~Z

s j ~Y ¼ y
� �

fYðyÞ
� �

¼ ð�1Þs d
rþs�1

dyrþs�1
ms;c f
� �

; (4.209)
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where we define ms;c :¼ Eð ~Zs j ~Y ¼ yÞ and f :¼ fYðyÞ for convenience. Using defi-

nition (4.193) for the pth derivative with p 
 m, this leads to

@pG

@zp

�

�

�

�

z¼0

¼
Y

m

i¼1

@iG

@zi

	 
epi
�

�

�

�

�

z¼0

¼
Y

m

i¼1

ð�1Þi d
i�1ðmi;cf Þ
dyi�1

	 
epi

¼ð�1Þm
Y

m

i¼1

di�1ðmi;cf Þ
dyi�1

	 
epi

:

(4.210)

Similarly the ûth derivative can be determined with u 
 s. It has to be considered
that for each partition u the elements of the corresponding partition û are increased

by 1. Thus, the smallest number is 2 and the largest is sþ 1. Hence, we obtain

@ûG

@wû
¼
Y

sþ1

i¼2

@iG

@wi

	 
eûi

¼
Y

sþ1

i¼2

@iG

@wi

	 
euði�1Þ

¼
Y

s

i¼1

@iþ1G

@wiþ1

	 
eui

¼
Y

s

i¼1

@iþ1F

@yiþ1

	 
eui

¼
Y

s

i¼1

dif

dyi

	 
eui

: (4.211)

Furthermore, we have Gw ¼ dF dy= ¼ f and ð�1Þ pj jþ uj j � f pj jþ uj j ¼ ð�f Þ pj jþ uj j
.

Using these formulas, we finally get for (4.207) or (4.208):

dmq

dlm

�

�

�

�

l¼0

¼ð�1Þm
X

p
m;u
s�jpj�1

apaû pj jþ uj j�1ð Þ!
sþ uj jð Þ! pj j�1� sð Þ! � �fð Þ� pj j� uj j

2

4 �
Y

s

i¼1

dif

dyi


 �eui
 !

� d
pj j�1�s

dy pj j�1�s

Y

m

i¼1

di�1 mi;c f
� �

dyi�1


 �epi
 !#

y¼qa ~Yð Þ
; ð4:212Þ

which is the formula for arbitrary derivatives of VaR. Written without abbreviations

this is

dmVaRa ~Yþl ~Z
� �

dlm

�

�

�

�

�

l¼0

¼ð�1Þm
X

p
m;u
s�jpj�1

apaû pj jþ uj j�1ð Þ!
sþ uj jð Þ! pj j�1� sð Þ! � �fYðyÞð Þ� pj j� uj j

2

4

�
Y

s

i¼1

difYðyÞ
dyi


 �eui
 !

� d
pj j�1�s

dy pj j�1�s

�
Y

m

i¼1

di�1
E ~Z

m j ~Y¼ y
� �

fYðyÞ
� �

dyi�1

" #epi !#

y¼qa ~Yð Þ
; ð4:213Þ

with ap ¼ m!
ð1!Þep1 ep ;1! �:::�ðm!Þep;m ep;m! .
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4.5.7 Determination of the First Five Derivatives of VaR

The general form of the mth derivative of VaR is given by (4.213). Subsequently,

the first five derivatives will be determined with this formula. For each derivative,

we have summands for all partitions p 
 m and u 
 s � pj j � 1. For the considered

cases 1 � m � 5, the following partitions p 
 m exist:

p 
 1 ¼ 11
� �

;

p 
 2 ¼ 12; 21
� �

;

p 
 3 ¼ 13; 1121; 31
� �

;

p 
 4 ¼ 14; 1221; 22; 1131; 41
� �

;

p 
 5 ¼ 15; 1321; 1122; 1231; 2131; 1141; 51
� �

: (4.214)

By construction, the expectation of the unsystematic loss is zero:

m1;cðyÞ ¼ E ~Z
1 j ~Y ¼ y

� �

¼ 0; (4.215)

which is called the “granularity adjustment condition”. Consequently, for all parti-

tions with ep1 6¼ 0, the summands of (4.213) are zero, too:

Y

m

i¼1

di�1 mi;c f
� �

dyi�1


 �epi

¼ 0ep1 �
Y

m

i¼2

di�1 mi;c f
� �

dyi�1


 �epi

¼
Q

m

i¼2

di�1 mi;c f
� �

dyi�1


 �epi

if ep1 ¼ 0;

0 if ep1 6¼ 0:

8

<

:

(4.216)

Hence, the only relevant partitions p 
 m of (4.214) with non-zero terms and the

corresponding numbers pj j are given as260

p 
 1 ¼ 11
� �

with p ¼ 11
�

�

�

� ¼ 1;

p 
 2 ¼ 21
� �

with p ¼ 21
�

�

�

� ¼ 1;

p 
 3 ¼ 31
� �

with p ¼ 31
�

�

�

� ¼ 1;

p 
 4 ¼ 41; 22
� �

with p ¼ 41
�

�

�

� ¼ 1; p ¼ 22
�

�

�

� ¼ 2;

p 
 5 ¼ 51; 2131
� �

with p ¼ 51
�

�

�

� ¼ 1; p ¼ 2131
�

�

�

� ¼ 2: (4.217)

For the associated terms

260In order to demonstrate that the resulting formula is also valid for m ¼ 1, the summand for

partition f11g, which equals zero due to argument (4.216), is still considered.
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ap ¼ m!

ð1!Þep1ep;1! � ::: � ðm!Þep;mep;m!
; (4.218)

we obtain

a11 ¼
1!

ð1!Þ1 � 1! ¼ 1;

a21 ¼
2!

ð2!Þ1 � 1! ¼ 1;

a31 ¼
3!

ð3!Þ1 � 1! ¼ 1;

a41 ¼
4!

ð4!Þ1 � 1! ¼ 1; a22 ¼
4!

ð2!Þ2 � 2! ¼
24

8
¼ 3;

a51 ¼
5!

ð5!Þ1 � 1! ¼ 1; a2131 ¼
5!

ð2!Þ1 � 1! � ð3!Þ1 � 1! ¼
120

12
¼ 10: (4.219)

According to (4.217), we only have pj j ¼ 1 and pj j ¼ 2, leading to the following

partitions u 
 s � pj j � 1:

pj j ¼ 1 : u 
 s ¼ 0ð Þ ¼ 0f g;
pj j ¼ 2 : u 
 s ¼ 0; s ¼ 1f g ¼ 0; 11

� �

: (4.220)

As we have one summand for each p 
 m and u 
 s � ðjpj � 1Þ, we obtain one

summand for m ¼ 1; 2; 3 and three summands for m ¼ 4; 5:

dmq

dlm

�

�

�

�

l¼0

¼ ðIÞ;
ðIÞ þ ðIIÞ þ ðIIIÞ;

�

if m ¼ 1; 2; 3;
if m ¼ 4; 5;

(4.221)

where the summands are determined with the following variables:

ðIÞ m ¼ 1; :::; 5 : p ¼ m1; pj j ¼ 1; u 
 s ¼ 0ð Þ ¼ 0f g;

ðIIÞ m ¼ 4 :

m ¼ 5 :

p ¼ 22;

p ¼ 2131;

�

pj j ¼ 2; u 
 s ¼ 0ð Þ ¼ 0f g;

ðIIIÞ m ¼ 4 :

m ¼ 5 :

p ¼ 22;

p ¼ 2131;

�

pj j ¼ 2; u 
 s ¼ 1ð Þ ¼ 11
� �

: (4.222)

The first summand (I), with p ¼ m1; pj j ¼ 1; s ¼ 0; u ¼ 0; uj j ¼ 0; û ¼ 11,

epm ¼ 1, and epi ¼ 0 for all i 6¼ m, equals:261

261For ease of notation, the arguments l ¼ 0 of the left-hand as well as y ¼ qað ~YÞ at the right-hand
side are omitted.
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ðIÞ ¼ apaû pj j þ uj j � 1ð Þ!
sþ uj jð Þ! pj j � 1� sð Þ! �fð Þ� pj j� uj j

�
Y

s

i¼1

dif

dyi


 �eui
 !

� d
pj j�1�s

dy pj j�1�s

Y

m

i¼1

di�1 mi;c f
� �

dyi�1


 �epi
 !

¼ 1 � 1 � 1þ 0� 1ð Þ!
0þ 0ð Þ! 1� 1� 0ð Þ! �fð Þ�1�0

Y
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i¼1

dif

dyi


 �eui
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� d
1�1�0

dy1�1�0

Y

m

i¼1

di�1 mi;c f
� �

dyi�1


 �epi
 !

¼�1

f
� d

m�1 mm;c f
� �

dym�1
: ð4:223Þ

For m ¼ 4, the second summand (II.[4]), with values p ¼ 22; pj j ¼ 2; s ¼ 0;

u ¼ 0; uj j ¼ 0; û ¼ 11, ep2 ¼ 2, and epi ¼ 0 for all i 6¼ 2, is equivalent to

II:½4�¼ apaû pj jþ uj j�1ð Þ!
sþ uj jð Þ! pj j�1�sð Þ! �fð Þ� pj j� uj j

�
Y

s

i¼1

dif

dyi


 �eui
 !

� d
pj j�1�s

dy pj j�1�s

Y

m

i¼1

di�1 mi;c f
� �

dyi�1
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¼ 3 �1 � 2þ0�1ð Þ!
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Y

0

i¼1

dif

dyi


 �eui
 !

� d
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dy
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 �2

: ð4:224Þ

For m ¼ 5, we have p ¼ 2131; pj j ¼ 2; s ¼ 0; u ¼ 0; uj j ¼ 0; û ¼ 11;
ep2 ¼ 1; ep3 ¼ 1; and epi ¼ 0 for all i 6¼ 2; 3, leading to

II:½5�¼ apaû pj jþ uj j�1ð Þ!
sþ uj jð Þ! pj j�1�sð Þ! �fð Þ� pj j� uj j Y
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: ð4:225Þ
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The third summand for m ¼ 4 (III.[4]), with p ¼ 22; pj j ¼ 2; s ¼ 1; u ¼ 11;

uj j ¼ 1; û ¼ 21; ep2 ¼ 2; epi ¼ 0 for all i 6¼ 2, and eu1 ¼ 1 equals

III:½4�¼ apaû pj jþ uj j�1ð Þ!
sþ uj jð Þ! pj j�1�sð Þ! �fð Þ� pj j� uj j

�
Y

s
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dif

dyi


 �eui
 !

� d
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dy pj j�1�s
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m
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di�1 mi;c f
� �
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dy

� d m2;c f
� �

dy


 �2

: ð4:226Þ

Form ¼ 5,wehave p ¼ 2131; pj j ¼ 2; s ¼ 1; u ¼ 11; uj j ¼ 1; û ¼ 21; ep2 ¼ 1;
ep3 ¼ 1; epi ¼ 0 for all i 6¼ 2; 3, and eu1 ¼ 1. Hence, we get

III:½5� ¼ apaû pj jþ uj j�1ð Þ!
sþ uj jð Þ! pj j�1� sð Þ! �fð Þ� pj j� uj j

�
Y

s

i¼1

dif

dyi
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� �
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Y

1

i¼1

dif

dyi


 �1
 !

� d
2�1�1

dy2�1�1

Y

5

i¼1

di�1 mi;c f
� �
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: ð4:227Þ

Summing up the relevant elements from (4.223) to (4.227) and multiplying

by ð�1Þm leads to

dq

dl
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�

�

�

l¼0

¼ ð�1Þ1 � � 1

f

	 


� d
1�1 m1;c f
� �

dy1�1
¼ m1;c ¼ 0; (4.228)
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¼ � 1

f
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� �
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; (4.229)
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f
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; (4.230)
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; (4.231)

and
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: ð4:232Þ

Comparing these terms, we find that the derivatives for m ¼ 1; :::; 5 can be

written as

dmq

dlm
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l¼0

¼ �1ð Þm � 1

f

	 


dm�1 mm;c f
� �

dym�1




� kðmÞ

� d
dy

1

f
� d m2;c f
� �

dy

dm�3 mm�2;c f
� �

dym�3

	 
�

(4.233)

or without abbreviations as

dmVaRa ~Y þ l ~Z
� �

dlm

�

�

�

�

�

l¼0

¼ �1ð Þm � 1

fYðyÞ
	 


dm�1 mm ~Z j ~Y ¼ y
� �

fYðyÞ
� �

dym�1

"

� kðmÞ � d
dy

1

fYðyÞ �
d m2 ~Z j ~Y ¼ y

� �

fYðyÞ
� �

dy

 

� d
m�3 mm�2

~Z j ~Y ¼ y
� �

fYðyÞ
� �

dym�3


�

y¼qa ~Yð Þ;
(4.234)

with kð1Þ ¼ kð2Þ ¼ 0; kð3Þ ¼ 1; kð4Þ ¼ 3, and kð5Þ ¼ 10, which is the result of

Wilde (2003).
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4.5.8 Order of the Derivatives of VaR

For any m 2 N, the (mþ1)th element of the Taylor series can be written as262

lm

m!

@mVaRað ~Y þ l ~ZÞ
@lm


 �

l¼0

¼ g � lm

m!

X

p
m

Y

m

i¼1

mi ~Z j ~Y ¼ y
� �� �epi

 !
�

�

�

�

�

y¼qað ~YÞ
; (4.235)

with g being a function that is independent of the number of credits n. With mi as the
ith moment about the origin and �i as the ith moment about the mean, it is possible

to write263

lm
X

p
m

Y

m

i¼1

mi ~Z j ~Y¼ y
� �� �epi �

�

y¼qa ~Yð Þ ¼
X

p
m

Y

m

i¼1

mi l ~Z j ~Y¼ y
� �� �epi �

�

y¼qa ~Yð Þ

¼
X

p
m

Y

m

i¼1

mi ~L�E ~L j~x� � j~x¼ x
� �� �epi �

�

x¼q1�a ~xð Þ

¼
X

p
m

Y

m

i¼1

mi ~Lj~x¼ x
� ��E ~Lj~x¼ x

� �� �� �epi �
�

x¼q1�a ~xð Þ

¼
X

p
m

Y

m

i¼1

�i ~L j~x¼ x
� �� �epi �

�

x¼q1�a ~xð Þ

¼
X

p
m

Y

m

i¼1

�i ~L j ~Y¼ y
� �� �epi �

�

y¼qa ~Yð Þ ð4:236Þ

for each m. Thus, the derivatives are given as

lm

m!

@mVaRað ~Y þ l ~ZÞ
@lm


 �

l¼0

¼ g � 1

m!

X

p
m

Y

m

i¼1

�i ~L j ~Y ¼ y
� �� �epi

 !
�

�

�

�

�

y¼qað ~YÞ
: (4.237)

262Cf. (4.213). The notation g � y means that a function g is composed with y.
263To illustrate that the first identity holds, an example will be demonstrated for m ¼ 5:

l �
X

p
5

Y

5

i¼1

mi ~Z
� �� �epi ¼ l � m5 ~Z

� �þ m4 ~Z
� � � m1 ~Z

� �þ m3 ~Z
� � � m1 ~Z

� �� �2
�

þm3 ~Z
� � � m2 ~Z

� �þ m2 ~Z
� � � m1 ~Z

� �� �3 þ m2 ~Z
� �2 � m1 ~Z

� �þ m1 ~Z
� �� �5

�

¼ m5 l ~Z
� �þ m4 l ~Z

� � � m1 l ~Z
� �þ m3 l ~Z

� � � m1 l ~Z
� �� �2

þm3 l ~Z
� � � m2 l ~Z

� �þ m2 l ~Z
� � � m1 l ~Z

� �� �3 þ m2 l ~Z
� �2 � m1 l ~Z

� �

þ m1 l ~Z
� �� �5

:

Furthermore, see (4.9) for the switch between the systematic loss y and the systematic factor x.
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Due to264

�i ~L j ~x ¼ x
� � ¼ �i

�ðxÞ �
X

n

j¼1

wj
i � �i

�ðxÞ � b

a

	 
i

� 1

ni�1
¼ O

1

ni�1

	 


;

with 0< a � EADi � b for all i, and revisiting (4.235) and (4.236), it is straightfor-
ward to see that only for m ¼ 3 and m ¼ 4 there exist terms which are at maximum

of order O(1/n2):

X

p
3

Y

3

i¼1

�i ~L j ~Y ¼ y
� �� �epi ¼ �3 ~L j ~Y ¼ y

� � ¼ O
1

n2

	 


;

X

p
4

Y

4

i¼1

�i ~L j ~Y ¼ y
� �� �epi ¼ �4 ~L j ~Y ¼ y

� �þ �2 ~L j ~Y ¼ y
� �� �2 ¼ O

1

n3

	 


þ O
1

n2

	 


:

(4.238)

All terms with higher derivatives of VaR are at least of Order O(1/n3).

4.5.9 VaR-Based Second-Order Granularity Adjustment for a
Normally Distributed Systematic Factor

For convenience, the summands of the second-order granularity add-on Dl2 will be
calculated separately:

Dl2 ¼ 1

6’

d

dx

1

dm1;c dx=

d

dx

�3;c’

dm1;c dx=

" # !

þ 1

8’

d

dx

1

’

1

dm1;c dx=

d

dx

�2;c’

dm1;c dx=

" # !2
2

4

3

5

�

�

�

�

�

�

x¼F�1ð1�aÞ
¼: Dl2;1 þ Dl2;2

�

�

x¼F�1ð1�aÞ: (4.239)

264See (4.14).
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The term Dl2;1 equals

Dl2;1 ¼ 1

6

d

dx

1

dm1;c dx=

 !

1

’

d

dx

�3;c’

dm1;c dx=

 !

þ 1

dm1;c dx=

1

’

d2

dx2
�3;c’

dm1;c dx=

 !" #

¼ 1

6

d

dx

1

dm1;c dx=

 !

1

’

d

dx
�3;c’
� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼:A

1

dm1;c dx=
þ �3;c

d

dx

1

dm1;c dx=

 !

0

B

B

@

1

C

C

A

2

6

6

4

þ 1

dm1;c dx=

1

’

d

dx

d

dx
�3;c’
� � 1

dm1;c dx=
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:B

þ �3;c’
d

dx

1

dm1;c dx=

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:C

2

6

6

6

4

3

7

7

7

5

:

(4.240)

For the calculation, we need the first and second derivative of the density

function ’. As the systematic factor is assumed to be normally distributed, we

have

’ ¼ 1
ffiffiffiffiffiffi

2p
p e�

x2

2 ; (4.241)

d’

dx
¼ �xð Þ 1

ffiffiffiffiffiffi

2p
p e�

x2

2 ¼ �x’; (4.242)

d2’

dx2
¼ �1ð Þ 1

ffiffiffiffiffiffi

2p
p e�

x2

2 � x �xð Þ 1
ffiffiffiffiffiffi

2p
p e�

x2

2 ¼ ðx2 � 1Þ’: (4.243)

Furthermore, we need the derivative

d

dx

1

dm1;c dx=

 !

¼ � d2m1;c dx2
�

dm1;c dx=
� �2

: (4.244)

Herewith, the term A form (4.240) can easily be calculated:

A ¼ 1

’

d

dx
�3;c’
� � ¼ d�3;c

dx
þ �3;c

’

d’

dx
¼ d�3;c

dx
� �3;cx: (4.245)
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Furthermore, dB dx= is equal to

dB

dx
¼ d

dx

d

dx
�3;c’
� � 1

dm1;c dx=

 !

¼ d2

dx2
�3;c’
� � 1

dm1;c dx=
þ d

dx
�3;c’
� � d

dx

1

dm1;c dx=

 !

¼ d

dx

d�3;c
dx

’þ �3;c
d’

dx

	 


1

dm1;c dx=
þ d�3;c

dx
’þ �3;c

d’

dx

	 


� d2m1;c dx2
�

dm1;c dx=
� �2

 !

¼ d2�3;c
dx2

’þ 2
d�3;c
dx

d’

dx
þ �3;c

d2’

dx2

	 


1

dm1;c dx=

� d�3;c
dx

’þ �3;c
d’

dx

	 


d2m1;c dx2
�

dm1;c dx=
� �2

: ð4:246Þ

Similarly, dC dx= is equivalent to

dC

dx
¼ d

dx
�3;c’ � d2m1;c dx2

�

dm1;c dx=
� �2

 ! !

¼ � d

dx
�3;c’
� � d2m1;c dx2

�

dm1;c dx=
� �2

� �3;c’
d

dx

d2m1;c dx2
�

dm1;c dx=
� �2

 !

¼ � d�3;c
dx

’� �3;c
d’

dx

	 


d2m1;c dx2
�

dm1;c dx=
� �2

� �3;c’
dm1;c dx=
� �2

d3m1;c dx3
�� �� 2 dm1;c dx=

� �

d2m1;c dx2
�� �2

dm1;c dx=
� �4

 !

: (4.247)

Using these terms, Dl2;1 results in

Dl2;1 ¼ 1

6
� d2m1;c dx2

�

dm1;c dx=
� �2

d�3;c dx=

dm1;c dx=
� �3;cx

dm1;c dx=
� �3;c

d2m1;c dx2
�

dm1;c dx=
� �2

 !"

þ 1

dm1;c dx=

1

’

d2�3;c
dx2

’þ 2
d�3;c
dx

d’

dx
þ �3;c

d2’

dx2

	 


1

dm1;c dx=

"

� 2
d�3;c
dx

’þ �3;c
d’

dx

	 


d2m1;c dx2
�

dm1;c dx=
� �2

��3;c’
dm1;c dx=
� �2

d3m1;c dx3
�� �� 2 dm1;c dx=

� �

d2m1;c dx2
�� �2

dm1;c dx=
� �4

 !#

:

(4.248)
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Applying the derivatives of ’ from (4.242) and (4.243) leads to

Dl2;1 ¼ 1

6
�3

d�3;c dx=
� �

d2m1;c dx2
�� �

dm1;c dx=
� �3

þ3
�3;cx d2m1;c dx2

�� �

dm1;c dx=
� �3

þ3�3;c
d2m1;c dx2

�� �2

dm1;c dx=
� �4

"

þ d2�3;c dx2
�

dm1;c dx=
� �2

�2x
d�3;c dx=

dm1;c dx=
� �2

þ �3;c x2�1ð Þ
dm1;c dx=
� �2

��3;c
d3m1;c dx3

�

dm1;c dx=
� �3

#

¼ 1

6 dm1;c dx=
� �2

�3;c x2�1�d3m1;c dx=
3

dm1;c dx=
þ3x d2m1;c dx2

�� �

dm1;c dx=
þ3 d2m1;c dx2

�� �2

dm1;c dx=
� �2

 !"

þd�3;c
dx

�2x�3 d2m1;c dx2
�� �

dm1;c dx=

 !

þd2�3;c
dx2

#

: ð4:249Þ

Henceforward, the summand Dl2;2 will be simplified:

Dl2;2 ¼ 1

8’

d

dx

1

’

1

dm1;c dx=

d

dx

�2;c’

dm1;c dx=

" # !2
2

4

3

5

¼ 1

8’

d

dx

’

dm1;c dx=

1

’

d

dx

�2;c’

dm1;c dx=

" # !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�

2

0

B

B

B

@

1

C

C

C

A

: (4.250)

The term (*) is the negative twice of the first-order granularity adjustment, so

that we can use the resulting equation (4.18). This leads to

Dl2;2 ¼ 1

8’

d

dx

’

dm1;c dx=
� x �2;c
dm1;c dx=

þ d�2;c dx=

dm1;c dx=
� �2;cd

2m1;c dx2
�

dm1;c dx=
� �2

" #2
0

@

1

A

¼ 1

8

1

’

d

dx

’

dm1;c dx=
� �3

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:ðIÞ

�x �2;c þ
d�2;c
dx

� �2;cd
2m1;c dx2

�

dm1;c dx=

 !2

2

6

6

6

6

4

þ 1

dm1;c dx=
� �3

d

dx
�x �2;c þ

d�2;c
dx

� �2;cd
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�

dm1;c dx=

" #2
0

@

1

A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:ðIIÞ

3

7

7

7

5

: (4.251)

Using the derivative of a normal distribution d’=dx ¼ �x’, the term (I) is

equivalent to
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ðIÞ ¼ 1

’

d

dx

’

dm1;c dx=
� �3

 !

¼ 1

’

d’

dx

1

dm1;c dx=
� �3

þ d

dx

1

dm1;c dx=
� �3

 !

¼ �x

dm1;c dx=
� �3

� 3
d2m1;c dx2

�� �

dm1;c dx=
� �4

: (4.252)

Term (II) can be written as

ðIIÞ ¼ d

dx
�x �2;c þ

d�2;c
dx

� �2;cd
2m1;c dx2

�

dm1;c dx=

" #2
0

@

1

A

¼ 2 �x �2;c þ
d�2;c
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� �2;cd
2m1;c dx2

�

dm1;c dx=

 !

��2;c � x
d�2;c
dx

þ d2�2;c
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� d

dx
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d2m1;c
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1

dm1;c dx=
� �2;c

d2m1;c
dx2

d

dx

1

dm1;c dx=

 !!

¼ 2 �x�2;c þ
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� �2;cd
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�

dm1;c dx=
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��2;c � x
d�2;c
dx

þ d2�2;c
dx2

	

� d�2;c
dx

d2m1;c dx2
�

dm1;c dx=
� �2;c

d3m1;c dx3
�

dm1;c dx=
þ �2;c

d2m1;c
dx2

d2m1;c dx2
�

dm1;c dx=
� �2

!

: (4.253)

Using these expressions, Dl2;2 from (4.251) is equal to

Dl2;2 ¼ 1

8

�x

dm1;c dx=
� �3

� 3
d2m1;c dx2

�� �

dm1;c dx=
� �4

 !
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 !2
2
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�
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��2;c � x
d�2;c
dx
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�d�2;c
dx

d2m1;c dx2
�
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� �2;c
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�

dm1;c dx=
þ �2;c

d2m1;c
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�

dm1;c dx=
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!#

; ð4:254Þ

which leads to
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Dl2;2 ¼ 1

8 dm1;c dx=
� �3

�x� 3
d2m1;c dx2

�

dm1;c dx=

 !

�2;c �x� d2m1;c dx2
�
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" #

þ d�2;c
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 !" 2

þ 2 �2;c xþ d2m1;c dx2
�
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" #
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 !
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�
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� �2
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�

dm1;c dx=

" #

� d2�2;c
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!#

: ð4:255Þ

Adding the terms Dl2;1 and Dl2;2 together results in

Dl2 ¼ 1

6 dm1;c dx=
� �2

�3;c x2�1�d3m1;c dx=
3

dm1;c dx=
þ3x d2m1;c dx2

�� �
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�2x�3 d2m1;c dx2
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!#
�

�
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�

�

x¼F�1 1�að Þ
: ð4:256Þ

4.5.10 Third Conditional Moment of Losses

Subsequently, the third conditional moment of the portfolios loss about the mean,

�3;c ¼ �3ð~L j ~x ¼ xÞ, shall be expressed in terms of the moments of separated factors

gLGDi and 1 ~Dif g. With

�3;c ¼ �3 ~L j ~x ¼ x
� �

¼ �3
X

n

i¼1

wi � gLGDi � 1 ~Dif g j ~x ¼ x

 !

¼
X

n

i¼1

wi
3 � �3 gLGDi � 1 ~Dif g j ~x ¼ x

� �

; (4.257)
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which is due to the conditional independence property, we need to determine

�3ð gLGDi � 1 ~Dif g j ~xÞ. In general, the third moment about the mean is equal to

�3 ~X
� � ¼ E ~X � E ~X

� �� �3
� �

¼ E ~X
3 � 3 ~X

2
E ~X
� �þ 3 ~XE2 ~X

� �� E
3 ~X
� �

h i

¼ E ~X
3

� �

� 3E ~X
2

� �

E ~X
� �þ 3E ~X

� �

E
2 ~X
� �� E

3 ~X
� �

¼ E ~X
3

� �

� 3E ~X
2

� �

E ~X
� �þ 2E3 ~X

� �

: (4.258)

Thus, the conditional moment �3ð gLGDi � 1 ~Dif g j ~xÞ can be written as

�3 gLGDi � 1 ~Dif g j ~x
� �

¼ E gLGD � 1 ~Dif g j ~x
h i3
	 


� 3E gLGD � 1 ~Dif g j ~x
h i2
	 


� E gLGDi � 1 ~Dif g j ~x
� �

þ 2E3
gLGDi � 1 ~Dif g j ~x

� �

: ð4:259Þ

Using the conditional independence property again, considering that the

LGDs are assumed to be stochastically independent of each other, and with

E½ð1 ~Dif g j ~xÞ
i� ¼ E½ð1 ~Dif g j ~xÞ� ¼ pð~xÞ, we have

�3 gLGDi � 1 ~Dif g j ~x
� �

¼ E gLGD j ~x
h i3
	 


p ~xð Þ � 3E gLGD j ~x
h i2
	 


E gLGD j ~x
� �

p2 ~xð Þ

þ 2E3
gLGD j ~x

� �

p3 ~xð Þ

¼ E gLGD
3

� �

p ~xð Þ � 3E gLGD
2

� �

E gLGD
� �

p2 ~xð Þ

þ 2E3
gLGD

� �

p3 ~xð Þ: ð4:260Þ

With the abbreviations ELGD ¼ EðgLGDÞ, VLGD ¼ VðgLGDÞ as well as

SLGD ¼ �3ðgLGDÞ and using (4.258) again, we obtain

E gLGD
2

� �

¼ ELGD2 þ VLGD; (4.261)

E gLGD
3

� �

¼ SLGDþ 3ðELGD2 þ VLGDÞELGD� 2ELGD3

¼ ELGD3 þ 3ELGD � VLGD þ SLGD: (4.262)

Consequently, (4.260) is equivalent to
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�3 gLGDi � 1 ~Dif g j ~x
� �

¼ ELGD3 þ 3ELGD � VLGD þ SLGD
� �

p ~xð Þ
� 3 ELGD3 þ ELGD � VLGD� �

p2 ~xð Þ þ 2ELGD3p3 ~xð Þ:
(4.263)

Thus, the conditional moment of the portfolio loss (4.257) can finally be

written as

�3;c ¼
X

n

i¼1

wi
3 � �3 gLGDi � 1 ~Dif g j ex ¼ x

� �

¼
X

n

i¼1

wi
3 ELGDi

3 þ 3 � ELGDi � VLGDi þ SLGDi

� � � piðxÞ
�

�3 � ELGDi
3 þ ELGDi � VLGDi

� � � pi2ðxÞ þ 2 � ELGDi
3 � pi3ðxÞ

�

: (4.264)

4.5.11 Difference Between the VaR Definitions

For the case of homogeneous credits and with LGD ¼ 1, the possible realizations

of losses are

l 2 0;
1

n
;
2

n
; :::;

n� 1

n
; 1

� �

; (4.265)

which implies

P ~L � l
� � ¼ P ~L< lþ 1 n=ð Þ� �

: (4.266)

If we define l2 :¼ l1 þ 1 n= , we get

VaRð�Þ
a

~L
� � ¼ sup l1 2 R jP ~L � l1

� �

< a
� �

¼ sup l1 2 R jP ~L< l1 þ 1

n

	 

 �

< a
� �

¼ sup l2 � 1

n

	 


2 R jP ~L< l2
� �

< a
� �

¼ sup l2 2 R jP ~L< l2
� �

< a
� �� 1

n

¼ VaRðþÞ
a

~L
� �� 1

n
: (4.267)
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4.5.12 Identity of ES Within the Basel Framework

Using the result of the ASRF framework (2.93), the definition of the ES (2.19),

the integral representation of the conditional expectation, and the identity of the

condition as in (4.9), the ES of the portfolio loss equals

ESðBaselÞa
~L
� � ¼ ESa E ~L j ~x� �� �

¼ ESa m1;c ~xð Þ� �

¼ 1

1� a
E m1;c ~xð Þ j m1;c ~xð Þ � qa m1;c ~xð Þ� �� �� �

¼ 1

1� a
E m1;c ~xð Þ j ~x � F�1 1� að Þ� �� �

¼ 1

1� a

ð

F�1 1�að Þ

�1
m1;cðxÞ’ðxÞdx: (4.268)

With the conditional independence property as in (2.92), the conditional PD of

the Vasicek model (2.66), the integral representation (2.126), and the symmetry

of the normal distribution, the ES can be written as

ESðBaselÞa
~L
� � ¼ 1

1� a

ð

F�1 1�að Þ

�1

X

n

i¼1

E wi � gLGDi � 1 Dif g j x
� �

’ðxÞdx

¼ 1

1� a

X

n

i¼1

wi � ELGDi �
ð

F�1 1�að Þ

�1
piðxÞ’ðxÞdx

¼ 1

1� a

X

n

i¼1

wi � ELGDi �
ð

F�1 1�að Þ

�1
F

F�1ðPDiÞ � ffiffiffiffi

ri
p � x

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ri
p

 !

’ðxÞdx

¼ 1

1� a

X

n

i¼1

wi � ELGDi � F2 F�1ð1� aÞ;F�1ðPDiÞ; ffiffiffiffi

ri
p� �

¼ 1

1� a

X

n

i¼1

wi � ELGDi � F2 �F�1ðaÞ;F�1ðPDiÞ; ffiffiffiffi

ri
p� �

:

(4.269)
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4.5.13 Arbitrary Derivatives of ES

According to (2.20), the ES can be written as

ESa ~L
� � ¼ 1

1� a

ð

1

a

qu ~L
� �

du: (4.270)

Thus, for continuous distributions, all derivatives of ES can be expressed as

dmESa
dlm

¼ dm

dlm
1

1� a

ð

1

a

qudu

0

@

1

A ¼ 1

1� a

ð

1

a

dmqu
dlm

du: (4.271)

The derivative of VaR is a function of fYðyÞ and mi;cðyÞ evaluated at quð ~YÞ. The
substitution u ¼ FYðyÞ, so that du dy= ¼ fYðyÞ, yðu ¼ aÞ ¼ F�1

Y ðaÞ ¼ qað ~YÞ, and
yðu ¼ 1Þ ¼ F�1

Y ð1Þ ¼ 1, leads to:265

dmESa
dlm

�

�

�

�

l¼0

¼ 1

1� a

ð

1

u¼a

dmqu
dlm

�

�

�

�

l¼0

du ¼ 1

1� a

ð

1

y¼qa ~Yð Þ

dmqu
dlm

�

�

�

�

l¼0

fYdy; (4.272)

where the expression resulting from the derivative of VaR simply has to be

evaluated at y since quð ~YÞ ¼ y. Using the derivatives of VaR from (4.212), this

leads to

dmESa
dlm

�

�

�

�

l¼0

¼ 1

1�a

ð

1

y¼qa ~Yð Þ
ð�1Þm

X

p
m;u
s�jpj�1

apaû pj jþ uj j�1ð Þ!
sþ uj jð Þ! pj j�1� sð Þ!

2

4

� �fð Þ� pj j� uj j �
Y

s

i¼1

dif

dyi


 �eui
 !

� d
pj j�1�s

dy pj j�1�s

Y

m

i¼1

di�1 mi;c f
� �

dyi�1


 �epi
 !#

f dy;

(4.273)

with ap ¼ m!

ð1!Þep1ep;1! � ::: � ðm!Þep;mep;m!
.

265Cf. Wilde (2003), p. 11.
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4.5.14 Determination of the First Five Derivatives of ES

Instead of solving the integral (4.272) for each of the derivatives of VaR

(4.228)–(4.232), we will directly evaluate the integral for the first five deri-

vatives. Using the expression for the first five derivatives of VaR (4.233), we

obtain

dmES

dlm

�

�

�

�

l¼0

¼ 1

1� a

ð

1

y¼qa ~Yð Þ

dmq

dlm
fYdy

¼ 1

1� a

ð

1

y¼qa ~Yð Þ
�1ð Þm � 1

f

	 


dm�1 mm;c f
� �

dym�1




� kðmÞ � d
dy

1

f
� d m2;c f
� �

dy

dm�3 mm�2;c f
� �

dym�3

	 
�

f dy: (4.274)

This term is equal to

dmES

dlm

�

�

�

�

l¼0

¼ �1ð Þm � 1

1� a
�

ð

1

y¼qa ~Yð Þ
� dm�1 mm;c f

� �

dym�1

	 


dy

0

B

B

@

þ kðmÞ �
ð

1

y¼qa ~Yð Þ

d

dy

1

f
� d m2;c f
� �

dy
� d

m�3 mm�2;c f
� �

dym�3

	 


dy

1

C

C

A

¼ �1ð Þm � 1

1� a
� � dm�2 mm;c f

� �

dym�2


 �1

qa ~Yð Þ

 

þkðmÞ � 1

f
� d m2;c f
� �

dy
� d

m�3 mm�2;c f
� �

dym�3


 �1

y¼qa ~Yð Þ

!

¼ �1ð Þm � 1

1� a
� dm�2 mm;c f

� �

dym�2

	

�kðmÞ � 1

f
� d m2;c f
� �

dy
� d

m�3 mm�2;c f
� �

dym�3


 �

�

�

�

�

y¼qa ~Yð Þ
; (4.275)
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or written without abbreviations as

dmESa ~Y þ l ~Z
� �

dlm

�

�

�

�

�

l¼0

¼ �1ð Þm � 1

1� a
� dm�2 mm ~Z j ~Y ¼ y

� �

fYðyÞ
� �

dym�2

 

� kðmÞ � 1

fYðyÞ



� d m2 ~Z j ~Y ¼ y
� �

fYðyÞ
� �

dy
� d

m�3 mm�2
~Z j ~Y ¼ y
� �

fYðyÞ
� �

dym�3

#!
�

�

�

�

�

y¼qa ~Yð Þ
;

(4.276)

with kð1Þ ¼ kð2Þ ¼ 0; kð3Þ ¼ 1; kð4Þ ¼ 3, and kð5Þ ¼ 10. This is the result of

Wilde (2003), except that the algebraic signs of Wilde (2003) seem to be

wrong.

4.5.15 ES-Based Second-Order Granularity Adjustment for a
Normally Distributed Systematic Factor

The summands of the second-order granularity add-on Dl2 can be expressed as

Dl2 ¼ 1

6 1� að Þ
1

dm1;c dx=

d

dx

�3;c’

dm1;c dx=

 !

þ 1

8 1� að Þ
1

’

1

dm1;c dx=

d

dx

�2;c’

dm1;c dx=

 !" #2
�

�

�

�

�

�

x¼F�1ð1�aÞ
¼: Dl2;1 þ Dl2;2

�

�

x¼F�1ð1�aÞ: (4.277)

Using the derivative of the normal distribution (4.242), the summand Dl2;1
equals

Dl2;1 ¼ 1

6 1� að Þ
1

dm1;c dx=

d

dx

�3;c’

dm1;c dx=

 !

¼ 1

6 1� að Þ
1

dm1;c dx=

d

dx
�3;c’
� � 1

dm1;c dx=
þ �3;c’

d

dx

1

dm1;c dx=

 !" #

¼ 1

6 1� að Þ
1

dm1;c dx=

d�3;c
dx

’þ �3;c
d’

dx

	 


1

dm1;c dx=
� �3;c’

d2m1;c dx2
�

dm1;c dx=
� �2

" #

¼ 1

6 1� að Þ
’

dm1;c dx=
� �2

d�3;c
dx

� �3;c x� d2m1;c dx2
�

dm1;c dx=

 !" #

: ð4:278Þ
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Using the same transformations, the summand Dl2;2 is equivalent to

Dl2;2 ¼ 1

8 1� að Þ
1

’

1

dm1;c dx=

d

dx

�2;c’

dm1;c dx=

 !" #2

¼ 1

8 1� að Þ
1

’

1

dm1;c dx=

1

dm1;c dx=

d�2;c
dx

’� �2;c’ x� d2m1;c dx2
�

dm1;c dx=

 !" #" #2

¼ 1

8 1� að Þ
’

dm1;c dx=
� �3

d�2;c
dx

� �2;c x� d2m1;c dx2
�

dm1;c dx=

 !" #2

; ð4:279Þ

leading to a second-order adjustment of

Dl2 ¼ 1

6 1� að Þ
’

dm1;c dx=
� �2

d�3;c
dx

� �3;c x� d2m1;c dx2
�

dm1;c dx=

 !" #

þ 1

8 1� að Þ
’

dm1;c dx=
� �3

d�2;c
dx

� �2;c x� d2m1;c dx2
�

dm1;c dx=

 !" #2
�

�

�

�

�

�

x¼F�1ð1�aÞ

:

(4.280)

4.5.16 Probability Density Function of the Logit-Normal
Distribution

The derivation of the density function is based on the inverse function theorem266

fYðyÞ ¼ fX g�1ðyÞ� � � dg�1ðyÞ
dy

�

�

�

�

�

�

�

�

: (4.281)

For the logit function ~Y ¼ e
~X ð1þ e

~XÞ
.

, we have

gðxÞ ¼ y ¼ ex

1þ ex
¼ 1

e�x þ 1

, e�x ¼ 1

y
� 1

, g�1ðyÞ ¼ x ¼ � ln
1

y
� 1

	 


(4.282)

266Cf. Appendix 4.5.3.
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and

dg�1ðyÞ
dy

¼ d

dy
� ln

1

y
� 1

	 
	 


¼ � 1
1
y � 1

� � 1

y2

	 


¼ 1

y 1� yð Þ : (4.283)

Using the density of a normal distribution (4.82) for fX and recognizing that y is
bounded in the interval [0, 1], we get

fYðyÞ ¼ fX � ln
1

y
� 1

	 
	 


� 1

y 1� yð Þ
�

�

�

�

�

�

�

�

¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

2ps2X
p exp � � ln 1 y= � 1ð Þ � mXð Þ2

2s2X

 !

� 1

y 1� yð Þ

¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

2ps2X
p exp � ln 1 y= � 1ð Þ þ mXð Þ2

2s2X

 !

� 1

y 1� yð Þ : (4.284)
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